首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
聚合物纳米复合材料以其质量轻、易加工成型、耐化学腐蚀等优秀特性成为电磁屏蔽材料的研究热点.复合材料的导电性是影响电磁屏蔽性能的关键因素,而聚合物基体中导电网络结构则决定了材料内部的电子传输效率,从而在很大程度上决定材料导电性能.合理的结构设计可以解决纳米填料在基体中易团聚、难分散的问题,实现低渗滤阈值、高导电性能/电磁屏蔽与多功能化的统一.我们围绕聚合物纳米复合材料的关键科学问题展开研究,取得一些创新性研究成果:(1)通过填料/基体界面调控,实现复合材料连续导电网络的构筑,制备系列低渗滤阈值聚合物导电复合材料;(2)发展三维导电结构预先构筑新方法,制备出高效导电网络,实现电磁屏蔽复合材料结构功能一体化设计与制备;(3)提出构建多界面结构策略,实现聚合物电磁屏蔽复合材料的轻量化设计.本专论针对我们研究成果进行总结,并对高性能电磁屏蔽纳米复合材料的发展前景进行展望.  相似文献   

2.
石墨烯是一种单原子层厚度的石墨材料,具有独特的二维结构和优异的电学、力学以及热学性能。同时它也是一种具有良好应用前景的锂离子电池电极材料。电极材料的微观结构对其性能有很大影响,利用石墨烯获得具有特殊形貌和微观结构的电极材料,能有效改善材料的各项电化学性能。本文综述了石墨烯及其复合材料在锂离子电池中的应用研究进展。在负极复合材料中,石墨烯不仅可以缓冲材料在充放电过程中的体积效应,还可以形成导电网络提升复合材料的导电性能,提高材料的倍率性能和循环寿命。通过优化复合材料的微观结构,例如夹层结构或石墨烯片层包覆结构,可进一步提高材料的电化学性能。在正极复合材料中,石墨烯形成的连续三维导电网络可有效提高复合材料的电子及离子传输能力。此外,相比于传统导电添加剂,石墨烯导电剂的优势在于能用较少的添加量,达到更加优异的电化学性能。最后对石墨烯复合材料的研究前景进行了展望。  相似文献   

3.
现代社会的发展带来了严重的电磁辐射和电磁污染的问题。吸波材料能够吸收微波的能量,减少反射,可以广泛地应用在抗电子干扰、电磁兼容、安全信息保密、人体安全防护等许多方面。理想的吸波材料应该具有吸收强、频段宽、质量轻等特点。橡胶为基体的吸波材料除了能有效耗散微波能量之外,还因其柔软、易剪裁、粘附性好的特点,在布置作结构复杂器件或腔体内部的吸波层时更有优势。本文介绍了吸波材料设计的基本原理,回顾了各类型橡胶吸波材料的特性,探讨了吸波剂种类和用量、吸波材料结构设计以及环境因素对橡胶吸波材料性能的影响,并对橡胶吸波材料未来的研究方向作出了展望。  相似文献   

4.
首先对羰基铁进行点腐蚀得到多孔羰基铁,然后采用St?ber法和原位聚合法将SiO_2和导电高分子聚吡咯包覆在多孔羰基铁表面,制备多孔羰基铁/SiO_2/聚吡咯电磁复合吸波材料。采用XRD、SEM、TEM、FT-IR对样品结构、微观形貌进行了表征,在网络分析仪中采用同轴法测试样品电磁参数,并根据传输线理论研究了2~18 GHz微波频段内吡咯含量及涂层厚度对样品吸波性能的影响。实验结果表明:制备的多孔羰基铁/SiO_2/聚吡咯复合电磁吸波材料具有核壳结构;随着吡咯加入量的增加,吸波材料吸收峰逐渐向低频方向移动;当涂层厚度为3.5 mm、吡咯加入量为6%(w/w)时,在9.44~17.56 GHz范围内反射率均低于-10 d B,频带宽度为8.12 GHz,损耗反射率达到-23 d B。良好的吸波性能归因于复合物有效的阻抗匹配特性及多重界面极化效应,多孔羰基铁/SiO_2/聚吡咯是一种轻质、宽频、强吸收的吸波材料。  相似文献   

5.
碳纳米管/聚合物复合材料   总被引:10,自引:0,他引:10  
张娟玲  崔屾 《化学进展》2006,18(10):1313-1321
本文简要介绍了碳纳米管的纯化和表面改性方法,着重对碳纳米管/聚合物复合材料的制备方法、微观结构表征及其力学、电学、光学等性能的研究进行了综述;简述了此类复合材料在电学、电磁屏蔽材料及吸波隐身材料、纤维材料以及航天工业等领域的应用,探讨了该研究领域所面临的一些问题及今后的发展方向。  相似文献   

6.
近年来,用于电化学能源存储和转化的石墨烯材料,得到了研究者们越来越多的关注。但是,这些石墨烯材料不同于严格定义的单原子碳层结构,往往具有孔洞、杂原子和化学官能团等缺陷结构。由于制备方法的不同,缺陷结构各不相同,其电化学性能也表现各异。结构分析表明,这类材料是由类似石墨烯片段的单元与聚合物链共价连接而成,使其具有石墨烯和聚合物的双重特性,我们称之为石墨烯化聚合物。由小分子通过自下而上的方法制备的多孔聚合物,也可以通过进一步热交联等方法,使其形成包含石墨烯片段单元与聚合物链的化学结构。这些材料与石墨烯衍生材料一起组成了石墨烯化聚合物的整个谱系;这个谱系涵盖了由聚合物到石墨烯的过渡区。更重要的是,这类材料特殊的结构与性质,使其成为一种兼具电子和离子传输通道的三维富碳高分子材料,非常适合作为电极材料应用于电化学能源存储和转化,这为我们深入研究储能器件中电极材料的结构与性能的相关关系提供了很好的材料平台。  相似文献   

7.
聚合物纳米杂化材料的控制合成、自组装及功能化   总被引:1,自引:0,他引:1  
聚合物纳米杂化材料的制备及功能化是当前国际前沿研究课题之一.特殊结构的聚合物可以通过分子间特殊相互作用,在纳米尺度上自发地组装成具有特殊结构和形态的集合体,这类材料在新材料、电子以及生物医学等领域具有广泛的应用前景.本文介绍国内外,特别是厦门大学在双亲性分子及嵌段共聚物的模板自组装、基于POSS单体纳米构筑单元以及POSS嵌段聚合物自组装的有机/无机纳米杂化材料、模板控制导电高分子材料纳米形态构筑等领域材料的可控合成和组装,与此同时对相关材料的性能及功能化应用进行了简要的讨论.  相似文献   

8.
吸波材料在隐身技术、电磁兼容、安全保护、微波暗室中的应用十分广泛,因而备受关注。然而传统吸波材料的功能单一,不能同时满足重量轻、涂层薄、柔性、环境适应性等多种需求,限制了其在柔性、可折叠和可穿戴设备中的应用。柔性复合吸波材料一般采用导电损耗、介电损耗和磁损耗等多种吸波机制联用,吸波效率高达99.99%以上,而且具备可折叠、可弯曲、可扭曲变形的特点,为吸波材料在未来人工智能、机器人及可穿戴设备领域的应用提供了重要思路。本文重点介绍碳基、聚合物基、超材料基等柔性复合吸波材料的一些重要研究进展,并对柔性复合吸波材料当前的挑战进行了总结,并对未来的发展趋势进行了展望。  相似文献   

9.
羰基铁-聚苯胺复合吸波材料的制备及性能   总被引:1,自引:0,他引:1  
为提高材料在低频段下的吸波性能,采用化学氧化聚合法和物理共混法制备聚苯胺和羰基铁一聚苯胺复合材料。通过X-射线衍射(XRD)、红外光谱(FT—IR)、矢量网络分析(PNA)等测试手段对材料的物相和性能进行了表征和分析。结果表明:在0~6GHz,羰基铁一聚苯胺复合材料的吸波性能较纯羰基铁有了很大提高,而且其吸收峰向低频区移动,当导电聚苯胺的质量分数为0.06时,其吸波性能最佳,最大吸收峰值为-39.1dB,-10dB以下频宽为1639MHz。  相似文献   

10.
由于表面效应、小尺寸效应和量子效应,使纳米结构的导电聚合物材料与传统聚合物材料相比,显示出更优越的性能。基于神经组织对电场和电刺激敏感性,使得导电聚合物纳米材料在生物医学应用方面很有前景。本文综述了纳米结构的导电聚合物的合成方法,及其在生物医学领域的应用。合成方法主要关注于硬模板法、软模板法和无模板自组装法,以及这些方法中导电聚合物纳米结构的形成机理。总结了具有纳米结构的导电聚合物,如纳米颗粒、纳米纤维和纳米管等作为神经电极涂层材料和生物传感器等方面的应用。  相似文献   

11.
在自行织造的聚(3,4-乙烯二氧噻吩)-聚对苯乙烯磺酸钠/聚乙烯醇(PEDOT-PSS/PVA)导电织物表面,通过原位聚合法生成了致密的PEDOT-PSS导电聚合物覆盖层,所得织物称之为in situ PEDOT-PSS/PVA复合导电织物.研究发现,在优化的合成条件下,in situ PEDOT-PSS/PVA复合导电织物具有优异的导电性能,其表面电阻最低可达2?/cm~2.电磁屏蔽性能测试结果表明,单层in situ PEDOT-PSS/PVA导电复合织物的电磁屏蔽效能可达12 dB左右,屏蔽率约为75%;在4~18 GHz的范围内,其电磁波反射率大部分都在-5~-10dB之间,可吸收75%~90%的电磁波,基本达到了军事吸波材料的要求.  相似文献   

12.
采用柠檬酸(CA)交联聚乙二醇(oligo-PEG, 平均分子量Mw=200, 400, 1000, 2000), 合成具有可生物降解性能的聚柠檬酸-乙二醇(PCE)交联聚酯, 并以此为基体材料制备得到准固态的三维交联型PCE/LiI/I2聚合物电解质. 采用红外吸收光谱(IR)、核磁共振氢谱(1H-NMR)、扫描电镜(SEM)和Raman光谱分别对PCE基体的分子结构、聚合物电解质的微观形貌以及导电离子对的存在形式进行表征; 通过线性扫描伏安法(LSV)研究了聚合物电解质的离子扩散系数、电导率以及电池的输出电流-电压(I-V)性能. 结果表明, PEG的分子量影响PCE基体膜的微观形貌及其吸液性能, 从而影响聚合物电解质的离子导电性能及电池的光电性能: 随着PEG分子量Mw从200, 400, 1000增大到2000, PCE基体膜的结构变得疏松, 吸液率增加, 吸液溶胀后的基体中I-3的跃迁活化能降低, 导致电解质的电导率和电池的短路光电流密度随之增加; 在60 mW·cm-2的入射光强下, 四种电解质对应电池的光电转化效率依次为3.26%、3.34%、4.26%和4.89%.  相似文献   

13.
潘朝莹  马建中  张文博  卫林峰 《化学进展》2020,32(10):1592-1607
柔性和可穿戴传感器最近十几年来的发展,使得它们在个性化医疗、人机交互和智能机器人等方面拥有良好的应用前景。由导电材料和弹性聚合物组成的柔性导电高分子复合材料具有高的可拉伸性、良好的柔韧性、优异的耐久性等优点,可用来制备传感范围宽、灵敏度高的柔性应变传感器。本文综述了基于柔性导电高分子复合材料的可拉伸应变传感器的分类(填充型、三明治型、吸附型应变传感器)和传感机理(隧穿效应,分离机制,裂纹扩展),并详细介绍了传感器所用复合材料的结构设计,包括内部结构(双逾渗网络、隔离、多孔、“砖混”结构)、表面结构(微裂纹、褶皱结构)和宏观结构(纤维状、网状、薄膜结构)。内部结构设计可降低材料的逾渗阈值,表面结构设计可提高传感器性能,每个宏观结构都有自己的特点。最后对应变传感器的材料选择、制备工艺、结构设计、附加性能、集成技术和应用方向等方面进行了展望。  相似文献   

14.
硫化聚合物锂离子电池正极材料的研究进展   总被引:5,自引:0,他引:5  
用单质硫对聚合物进行硫化,可以制备具有电化学活性的导电高分子材料.这些材料用作锂离子电池正极活性材料,可获得较高的比容量.综述了聚二乙基硅氧烷、聚乙烯、聚乙炔、聚苯乙烯、聚丙烯腈等聚合物通过单质硫在200~360℃下硫化所制得的导电高分子材料的电化学特性.  相似文献   

15.
对聚苯胺、聚吡啶等共轭聚合物与非导电聚合物材料的复合体系的结构和性能进行了综述。不同方法制备的复合材料在结构和性能上各有特点。一般共轭聚合物与非导电高分子材料相容性差、尤其是低极性高分了。  相似文献   

16.
高分子基气敏导电材料是近年来发展起来的一种新型功能高分子复合材料.本文介绍了以炭黑(CB)为导电填充剂的复合传感材料的气敏响应机理的体积膨胀模型、结晶模型和氢键模型,并讨论了逾渗阀值、CB及聚合物微观结构与性能、以及CB与聚合物和溶剂三者之间相互作用等因素对该类材料气敏响应性的影响.  相似文献   

17.
聚吡咯(PPy)以其环境稳定性好、低毒、可调的导电性等优点,在热电材料研究方面日益受到人们的关注。采用纳米结构导电聚合物或将有机导电聚合物材料与高导电性的碳纳米粒子进行复合制备聚合物/碳纳米粒子复合材料,可以有效地改善其热电性能。本文结合该领域近年来的研究进展,重点讨论了PPy及其复合热电材料的研究结果,对一维纳米结构PPy的制备也进行了论述。  相似文献   

18.
纳米铁氧体材料的许多电磁性质和光学性质已经有了一些研究[1]。为了改善其性能,有研究者将稀土Ce3 掺入铁氧体材料进行改性,发现其磁导率有明显改变[2]。纳米CoFe2O4因为具有较高的矫顽力、适中的饱和磁化强度、适中的机械强度和化学性质稳定而作为硬磁材料[3]。有研究表明,在CoFe2O4体系中掺入过渡金属离子可以改变其磁性[4],加入稀土Yb3 ,La3 可以使晶格发生畸变,增强磁光效应[5]。因此,本工作研究CoFe2O4体系中掺入La3 引起磁性的变化。磁性纳米粒子掺杂到导电聚合物中可制备高性能吸波材料[6]。因为单一的铁氧体在吸波过程中虽无…  相似文献   

19.
聚苯胺(PANi)主链上电子高度离域,掺杂后导电性能好,是优良的结构型导电聚合物。PANi纳米纤维比表面积大,容易获得更高的导电性。本文综合论述了近年来国内外采用静电纺丝方法制备PANi及其复合纳米纤维的研究进展,重点介绍了纯PANi纳米纤维以及PANi/聚环氧乙烷(PEO)、PANi/聚丙烯腈(PAN)、PANi/聚甲基丙烯酸甲酯(PMMA)和PANi/聚乳酸(PLA)等复合纳米纤维的制备工艺及纤维特性,简单概述了PANi及其复合纳米纤维在电池隔膜、过滤、传感器、电磁屏蔽材料及吸波材料等方面的应用,并对其发展趋势进行展望。  相似文献   

20.
0引言导电聚合物/无机物纳米复合材料具有纳米材料和导电聚合物的共同特性,因此在电催化、二次充电电池材料、超级电容器材料等方面具有良好的应用前景[1]。聚噻吩(PTh)以及取代聚噻吩是导电聚合物领域中较早发现的具有环境稳定性和可加工性的材料之一。近年来,有关聚噻吩/无机物纳米复合材料的制备及其光电性能的研究倍受关注,Gebeyehu等[2]用PTh敏化纳米晶TiO2光伏电池,发现其光伏效率明显优于固态光伏电池;Jayant等[3]研究了PTh中的羧基基团的影响以及在纳米晶TiO2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号