首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A New Rare‐Earth Metal(III) Fluoride Oxoselenate(IV): YF[SeO3] Just two representatives of the rare‐earth metal(III) fluoride oxoselenates(IV) with the formula type MF[SeO3] (M = La and Lu) exist so far, whereas for the intermediate lanthanoids only M3F[SeO3]4‐type compounds (M = Gd and Dy) were accessible. Because of the similar radius of Y3+ to the radii of the heavier lanthanoid cations, a missing link within the MF[SeO3] series could be synthesized now with the example of yttrium(III) fluoride oxoselenate(IV). Contrary to LuF[SeO3] with its triclinic structure, YF[SeO3] crystallizes monoclinically in space group P21/c (no. 14, a = 657.65(7), b = 689.71(7), c = 717.28(7) pm, β = 99.036(5)° and Z = 4). A single Y3+ cation occupying the general site 4e is surrounded by six oxide and two fluoride anions forming [YO6F2]11? polyhedra (d(Y–O) = 228–243 plus 263 pm, d(Y–F) = 219–220 pm). These are linked via common O···O edges to chains running along [010] and adjacent chains get tied to each other by sharing common O3···O3 and O3···F edges which results in sheets parallel to (100). The Se4+ cations connect these sheets as ψ1‐tetrahedral [SeO3]2? anions (d(Se–O) = 168–174 pm) for charge balance via all oxygen atoms. Despite the different coordination numbers of seven and eight for the rare‐earth metal(III) cations the structures of LuF[SeO3] and YF[SeO3] appear quite similar. The chains containing pentagonal bipyramids [LuO5F2]9? are connected to layers running parallel to the (100) plane again. In fact it is only necessary to shorten the partial structure of the straight chains along [001] to achieve the angular chains in YF[SeO3]. As a result of this shortening one oxide anion at a time moves into the coordination sphere of a neighboring Y3+ cation and therefore adds up the coordination number for Y3+ to eight. For the synthesis of YF[SeO3] yttrium sesquioxide (Y2O3), yttrium trifluoride (YF3) and selenium dioxide (SeO2) in a molar ratio of 1 : 1 : 3 with CsBr as fluxing agent were reacted within five days at 750 °C in evacuated graphitized silica ampoules.  相似文献   

2.
During attempts to synthesize lanthanoid(III) fluoride oxoselenates(IV) with the simple composition MF[SeO3], not only Pr3F[SeO3]4, but also Pr5F[SiO4]2[SeO3]3 appeared as pale green crystalline by‐products in the case of praseodymium. Pr5F[SiO4]2[SeO3]3 crystallizes triclinically in space group P$\bar{1}$ (no. 2) with a = 701.14(5), b = 982.68(7), c = 1286.79(9) pm, α = 70.552(3), β = 76.904(3), γ = 69.417(3)° and Z = 2. The five crystallographically different Pr3+ cations on the general positions 2i show coordination numbers of eight and nine. [(Pr1)O8]13– and [(Pr2)O8]13– polyhedra are connected to$\bar{1}$ {[(Pr1, 2)2O12]18–} chains along the [100] direction. [(Pr3)O7F]12–, [(Pr4)O8F]14– and [(Pr4)O8F]14– polyhedra generate [F(Pr3, 4, 5)3O19]30– units about their central F anion in triangular Pr3+ coordination. These units form $\bar{1}$ {[F(Pr3, 4, 5)3O16]24–} strands, again running parallel to [100]. Their alternating connection with the $\bar{1}$ {[(Pr1, 2)2O12]18–} chains results in $\bar{1}$ {[Pr5O20F]26–} sheets parallel to the (001) plane. Like in the already known related compound Er3F[SiO4][SeO3]2, a three‐dimensional network $\bar{1}$ {[Pr5O17F]20–} is achieved without the contribution of both the tetravalent silicon and selenium components. However, two Si4+ and three Se4+ cations forming tetrahedral [SiO4]4– and ψ1‐tetrahedral [SeO3]2– units with all O2– anions guarantee the charge balance. The formation of Pr5F[SiO4]2[SeO3]3 was observed when praseodymium sesquioxide (Pr2O3: in‐situ produced from Pr and Pr6O11 in a molar ratio of 3/11:4/11),praseodymium trifluoride (PrF3) and selenium dioxide (SeO2) in 1:1:3 molar ratios were reacted with CsBr as fluxing agent for five days at 750 °C in evacuated fused silica (SiO2) ampoules.  相似文献   

3.
4.
Iodostannates(II) with Anionic [SnI3] Chains – the Transition from Five to Six‐coordinated SnII The iodostannates (Me4N) [SnI3] ( 1 ), [Et3N–(CH2)4–NEt3] [SnI3]2 ( 2 ), [EtMe2N–(CH2)2–NEtMe2] [SnI3]2 ( 3 ), [Me2HN–(CH2)2–NH–(CH2)2–NMe2H] [SnI3]2 ( 4 ), [Et3N–(CH2)6–NEt3] [SnI3]2 ( 5 ) and [Pr3N–(CH2)4–NPr3]‐ [SnI3]2 · 2 DMF ( 6 ) with the same composition of the anionic [SnI3] chains show differences in the coordination of the SnII central atoms. Whereas the Sn atoms in 1 and 2 are coordinated in an approximately regular octahedral fashion, in compounds 3 – 6 the continuous transition to coordination number five in (Pr4N) [SnI3] ( 7 ) or [Fe(dmf)6] [SnI3]2 ( 8 ) can be observed. Together with the shortening of two or three Sn–I bonds, the bonds in trans position are elongated. Thus weak, long‐range Sn…I interactions complete the distorted octahedral environment of SnI4 groups in 3 and 4 and SnI3 groups in 5 and 6 . Obviously the shape, size and charge of the counterions and the related cation‐anion interactions are responsible for the variants in structure and distortion.  相似文献   

5.
Pale violet, needle‐shaped single crystals of the new neodymium(III) oxide chloride oxoselenate(IV) Nd7O5Cl3[SeO3]4 were obtained by the reaction of Nd2O3 and NdCl3 with SeO2 (molar ratio: 3:1:4) in evacuated silica ampoules within seven days at 775 °C, if an excess of CsCl worked as fluxing agent. Nd7O5Cl3[SeO3]4 crystallizes in the triclinic space group P with the lattice parameters a = 694.46(4), b = 944.53(5), c = 1567.92(9) pm, α = 87.821(3), β = 81.849(3), γ = 84.852(3)° and Z = 2. Its structure exhibits seven crystallographically different Nd3+ cations, of which (Nd1)3+ – (Nd4)3+ are coordinated by O2– anions forming distorted square prisms. The polyhedra of (Nd1)3+ and (Nd2)3+ receive additional caps by one Cl anion each, and (Nd5)3+ – (Nd7)3+ show mixed square antiprismatic environments of O2– and Cl anions too. However, the polyhedra of (Nd5)3+ and (Nd6)3+ include two, the polyhedron about (Nd7)3+ even three Cl anions. Two‐dimensional layers of edge‐ and vertex‐linked [ONd4]10+ tetrahedra are built up by (O1)2– – (O5)2– together with all Nd3+ cations. All the other oxygen atoms belong to four crystallographically different Se4+ cations erecting ψ1‐tetrahedral oxoselenate(IV) units [SeO3]2– with stereochemically active non‐bonding electron pairs (“lone pairs”) pointing into the free space between the layers. Three independent Cl anions in threefold coordination of Nd3+ cations interconnect the layers to form a three‐dimensional network, thereby achieving the charge balance.  相似文献   

6.
Iodostannates with Polymeric Anions: (Me3PhN)4 [Sn3I10], [Me2HN–(CH2)2–NMe2H]2 [Sn3I10], and [Me2HN–(CH2)2–NMe2H] [Sn3I8] The polymeric iodostannate anions in (Me3PhN)4 [Sn3I10] ( 1 ) and [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ) consist of Sn3I12‐trioctahedra, which share four common iodine atoms with adjacent units to form infinite layers in 1 and polymeric chains in 2 . In the anion of [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ) distorted SnI6 octahedra sharing common edges and vertices form a two‐dimensional network. (Me3PhN)4 [Sn3I10] ( 1 ): Space group C2/c (No. 15), a = 2406.9(2), b = 968.26(7), c = 2651.7(2) pm, β = 111.775(9), V = 5738.9(8) · 106 pm3; [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ): Space group P21/n (No. 14), a = 1187.2(1), b = 1554.4(1), c = 1188.9(1) pm, β = 116.620(8), V = 1961.4(3) · 106 pm3; [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ): Space group P21/c (No. 14), a = 1098.9(2), b = 803.93(7), c = 1571.5(2) pm, β = 102.96(1), V = 1352.9(2) · 106 pm3.  相似文献   

7.
CuYS2: A Ternary Copper(I) Yttrium(III) Sulfide with Chains {[Cu(S1)3/3(S2)1/1]3–} of cis ‐Edge Connected [CuS4]7– Tetrahedra Pale yellow, lath‐shaped single crystals of the ternary copper(I) yttrium(III) sulfide CuYS2 are obtained by the oxidation of equimolar mixtures of the metals (copper and yttrium) with sulfur in the molar ratio 1 : 1 : 2 within fourteen days at 900 °C in evacuated silica ampoules, while the presence of CsCl as fluxing agent promotes their growth. The crystal structure of CuYS2 (orthorhombic, Pnma; a = 1345.3(1), b = 398.12(4), c = 629.08(6) pm, Z = 4) exhibits chains of cis‐edge linked [CuS4]7– tetrahedra with the composition {[Cu(S1)3/3(S2)1/1]3–} running along [010] which are hexagonally bundled as closest rod packing. Charge equalization and three‐dimensional interconnection of these anionic chains occur via octahedrally coordinated Y3+ cations. These are forming together with the S2– anions a network [Y(S1)3/3(S2)3/3] of vertex‐ and edge‐shared [YS6]9– octahedra with ramsdellite topology. The metall‐sulfur distances of the [CuS4]7– tetrahedra (230 (Cu–S2), 232 (Cu–S1), and 253 pm (Cu–S1′, 2 × )) cover a very broad interval, whilst these (Y–S: 267–280 pm) within the [YS6]9– octahedra range rather closely together.  相似文献   

8.
Methyl methacrylate/styrene (MMA/S), ethyl methacrylate/styrene (EMA/S) and butyl methacrylate/styrene (BMA/S) feeds (>90 mol % methacrylate) were copolymerized in 50 wt % p‐xylene at 90 °C with 10 mol % of additional SG1‐free nitroxide mediator relative to unimolecular initiator (BlocBuilder®) to yield methacrylate rich copolymers with polydispersities w/ n = 1.23–1.46. kpK values (kp = propagation rate constant, K = equilibrium constant) for MMA/S copolymerizations were comparable with previous literature, whereas EMA/S and BMA/S copolymerizations were characterized by slightly higher kpK's. Chain extensions with styrene at 110 °C initiated by the methacrylate‐rich macroinitiators (number average molecular weight n = 12.9–33.5 kg mol?1) resulted in slightly broader molecular weight distributions with w/ n = 1.24–1.86 and were often bimodal. Chain extensions with glycidyl methacrylate/styrene/methacrylate (GMA/S/XMA where XMA = MMA, EMA or BMA) mixtures at 90 °C using the same macroinitiators resulted frequently in bimodal molecular weight distributions with many inactive macroinitiators and higher w/ n = 2.01–2.48. P(XMA/S) macroinitiators ( n = 4.9–8.9 kg mol?1), polymerized to low conversion and purified to remove “dead” chains, initiated chain extensions with GMA/MMA/S and GMA/EMA/S giving products with w/ n ~ 1.5 and much fewer unreacted macroinitiators (<5%), whereas the GMA/BMA/S chain extension was characterized by slightly more unreacted macroinitiators (~20%). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2574–2588, 2009  相似文献   

9.
CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 and CuSm2(SeO3)4: Transition Metal containing Selenites of Samarium and Gadolinum The reaction of CoCl2, Sm2O3, and SeO2 in evacuated silica ampoules lead to blue single crystals of CoSm(SeO3)2Cl (triclinic, , Z = 4, a = 712.3(1), b = 889.5(2), c = 1216.2(2) pm, α = 72.25(1)°, β = 71.27(1)°, γ = 72.08(1)°, Rall = 0.0586). If MnCl2 is used in the reaction light pink single crystals of MnSm(SeO3)2Cl (triclinic, , Z = 2, a = 700.8(2), b = 724.1(2), c = 803.4(2) pm, α = 86.90(3)°, β = 71.57(3)°, γ = 64.33(3)°, Rall = 0.0875) are obtained. Green single crystals of CuGd2(SeO3)2Cl (triclinic, , Z = 4, a = 704.3(4), b = 909.6(4), c = 1201.0(7) pm, α = 70.84(4)°, β = 73.01(4)°, γ = 70.69(4)°, Rall = 0.0450) form analogously in the reaction of CuCl2 and Gd2O3 with SeO2. CoSm(SeO3)2Cl contains [CoO4Cl2] octahedra, which are connected via one edge and one vertex to infinite chains. The Mn2+ ions in MnSm(SeO3)2Cl are also octahedrally coordinated by four oxygen and two chlorine ligands. The linkage of the polyhedra to chains occurs exclusively via edges. Both, the cobalt and the manganese compound show the Sm3+ ions in eight and ninefold coordination of oxygen atoms and chloride ions. In CuGd(SeO3)2Cl the Cu2+ ions are coordinated by three oxygen atoms and one Cl ion in a distorted square planar manner. One further Cl and one further oxygen ligand complete the [CuO3Cl] units yielding significantly elongated octahedra. The latter are again connected to chains via two common edges. For the Gd3+ ions coordination numbers of ?8 + 1”? and nine were found. Single crystals of the deep blue selenites CuM2(SeO3)4 (M = Sm/Gd, monoclinic, P21/c, a = 1050.4(3)/1051.0(2), b = 696.6(2)/693.5(1), c = 822.5(2)/818.5(2) pm, β = 110.48(2)°/110.53(2)°, Rall = 0.0341/0.0531) can be obtained from reactions of the oxides Sm2O3 and Gd2O3, respectively, with CuO and SeO2. The crystal structure contains square planar [CuO4] groups and irregular [MO9] polyhedra.  相似文献   

10.
A well‐defined random copolymer of styrene (S) and chloromethylstyrene (CMS) featuring lateral chlorine moieties with an alkyne terminal group is prepared (P(S‐co‐CMS), = 5500 Da, PDI = 1.13). The chloromethyl groups are converted into Hamilton wedge (HW) entities (P(S‐co‐HWS), = 6200 Da, PDI = 1.13). The P(S‐co‐HWS) polymer is subsequently ligated with tetrakis(4‐azidophenyl)methane to give HW‐functional star‐shaped macromolecules (P(S‐co‐HWS))4, = 25 100 Da, PDI = 1.08). Supramolecular star‐shaped copolymers are then prepared via self‐assembly between the HW‐functionalized four‐arm star‐shaped macromolecules ( P(S‐co‐HW )) 4 and cyanuric acid (CA) end‐functionalized PS (PS–CA, = 3700 Da, PDI = 1.04), CA end‐functionalized poly(methyl methacrylate) (PMMA–CA, = 8500 Da, PDI = 1.13) and CA end‐functionalized polyethylene glycol (PEG–CA, = 1700 Da, PDI = 1.05). The self‐assembly is monitored by 1H NMR spectroscopy and light scattering analyses.  相似文献   

11.
Synthesis and Crystal Structure of [N(Hex)4] [Cu2(CN)3] [N(Hex)4][Cu2(CN)3] has been prepared by solvothermal reaction of CuCN with Tetra‐n‐hexylammoniumiodide in acetone. The crystal structure is built up by condensed (CuCN)6 and (CuCN)7 rings, forming a zeolith type cyanocuprate(I) framework [Cu2(CN)3]. Space group R3; α = 44.482(6), c = 21.283(4) Å, V = 36471(9) Å3; Z = 9.  相似文献   

12.
Unmodified β‐cyclodextrin has been directly used to initiate ring‐opening polymerization of ϵ‐caprolactone in the presence of yttrium trisphenolate. Well‐defined cyclodextrin (CD)‐centered star‐shaped poly(ϵ‐caprolactone)s have been successfully synthesized containing definite average numbers of arms (Narm = 4–6) and narrow polydispersity indexes (below 1.10). The number‐average molecular weight ( ) and average molecular weight per arm ( ) are controlled by the feeding molar ratio of monomer to initiator. The prepared star‐PCL with of 2.7 × 103 is in fully amorphous and that with of 13.3 × 103 is crystallized. In addition, the obtained poly(e‐caprolactone) (PCL) stars with various molecular weights have different solubilities in methanol and tetrahydrofuran, which can be applied for further modifications.  相似文献   

13.
The lamellar coordination polymer [(CuSCN)2(μ‐1,10DT18C6)] (1,10DT18C6 = 1,10‐dithia‐18‐crown‐6), in which staircase‐like CuSCN double chains are bridged by thiacrown ether ligands, may be prepared in two triclinic modifications 1 a and 1 b by reaction of CuSCN with 1,10DT18C6 in respectively benzonitrile or water. Performing the reaction in acetonitrile in the presence of an equimolar quantity of KSCN leads, in contrast, to formation of the K+ ligating 2‐dimensional thiocyanatocuprate(I) net [{Cu2(SCN)3}] of 2 , half of whose Cu(I) atoms are connected by 1,10DT18C6 macrocycles. The potassium cations in [{K(CH3CN)}{Cu2(SCN)3(μ‐1,10DT18C6)}] ( 2 ) are coordinated by all six potential donor atoms of a single thiacrown ether in addition to a thiocyanate S and an acetonitrile N atom. Under similar conditions, reaction of CuI, NaSCN and 1,10DT18C6 affords [{Na(CH3CN)2}{Cu4I4(SCN)(μ‐1,10DT18C6)}] ( 3 ), which contains distorted Cu4I4 cubes as characteristic molecular building units. These are bridged by thiocyanate and thiacrown ether ligands into corrugated Na+ ligating sheets. In the presence of divalent Ba2+ cations, charge compensation requirements lead to formation of discrete [Cu(SCN)3(1,10DT18C6‐κS)]2– anions in [Ba{Cu(SCN)3(1,10DT18C6‐κS)}] ( 4 ).  相似文献   

14.
Reactions of dry THF/MeCN solutions of Ca[Re6SCl(Cla)6] with silylated derivatives E(SiMe3)2 (E = PhAs, PSiMe3, HN, O, S) and addition of trialkylphosphine PPr3 afford in high yields and at room temperature either the neutral clusters [Re6SX(PPr3)] ( 1 : X = As, 2 : X = P) or the ionic compounds [Re6SX(PPr3)]2+ · [Re6S6Cl8]2– ( 3 : X = NH, 4 : X = O, 5 : X = S). The compounds 1 – 5 were characterised by X‐ray crystal structure analysis. A di‐substitution reaction occurs on the {Re6SCl}4+ cluster core, where the two inner μ3‐chloro ligands Cli are substituted by X (X = As, P, NH, O, S) and all six terminal chloro ligands Cla are exchanged by terminal PPr3‐ligands.  相似文献   

15.
The protonation constants of 2‐[4,7,10‐tris(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecan‐1‐yl]acetic acid (H7DOA3P) and of the complexes [Ln(DOA3P)]4? (Ln=Ce, Pr, Sm, Eu, and Yb) have been determined by multinuclear NMR spectroscopy in the range pD 2–13.8, without control of ionic strength. Seven out of eleven protonation steps were detected (pK =13.66, 12.11, 7.19, 6.15, 5.77, 2.99, and 1.99), and the values found compare well with the ones recently determined by potentiometry for H7DOA3P, and for other related ligands. The overall basicity of H7DOA3P is higher than that of H4DOTA and trans‐H6DO2A2P but lower than that of H8DOTP. Based on multinuclear‐NMR spectroscopy, the protonation sequence for H7DOA3P was also tentatively assigned. Three protonation constants (pKMHL, pKMH2L, and pKMH3L) were determined for the lanthanide complexes, and the values found are relatively high, although lower than the protonation constants of the related ligand (pK , pK , and pK ), indicating that the coordinated phosphonate groups in these complexes are protonated. The acid‐assisted dissociation of [Ln(DOA3P)]4? (Ln=Ce, Eu), in the region cH+=0.05–3.00 mol dm?3 and at different temperatures (25–60°), indicated that they have slightly the same kinetic inertness, being the [Eu(H2O)9]3+ aqua ion the final product for europium. The rates of complex formation for [Ln(DOA3P)]4? (Ln=Ce, Eu) were studied by UV/VIS spectroscopy in the pH range 5.6–6.8. The reaction intermediate [Eu(DOA3P)]* as ‘out‐of‐cage’ complex contains four H2O molecules, while the final product, [Eu(DOA3P)]4?, does not contain any H2O molecule, as proved by steady‐state/time‐resolved luminescence spectroscopy.  相似文献   

16.
A series of random copolymers and block copolymers containing water‐soluble 4AM and fluorescent VAK are synthesized by NMP. The homopolymerizations of 4AM and VAK and 4AM/VAK random copolymerization are performed in 50 wt% DMF using 10 mol% SG1, resulting in a linear increase in versus conversion, and final polymers with narrow molecular weight distributions ( < 1.4). Reactivity ratios rVAK = 0.64 ± 0.52 and r4AM = 0.86 ± 0.66 are obtained for the 4AM/VAK random copolymerization. In addition, a poly(4AM) macroinitiator is used to initiate a surfactant‐free suspension polymerization of VAK. After 2.5 h, the resulting amphiphilic block copolymer has = 12.6 kg · mol?1, = 1.48, molar composition FVAK = 0.38 with latex particle sizes between 270 and 475 nm.

  相似文献   


17.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

18.
The structures of [Pd(η3‐C3H5)(HpzR2)2](BF4) (HpzR2=Hpzbp2=3,5‐bis(4‐butoxyphenyl)‐1H‐pyrazole, 1 ; HpzR2=HpzNO2=3,5‐dimethyl‐4‐nitro‐1H‐pyrazole=Hdmnpz, 2 ) and [Ag(HpzR2)2](A) (HpzR2=Hpzbp2, A= , 3 ; HpzR2=HpzNO2, A= , 4 ) were comparatively analyzed to determine the factors responsible for polymeric assemblies. In all cases, the H‐bonding interactions between the pyrazole moieties and the appropriate counterion and, in particular, the orientation of the NH groups of the pyrazole ligands are determinant of one‐dimensional polymeric arrays. In this context, the new compound [Ag(HpzNO2)2](NO3) ( 5 ) was synthesized and its structure analyzed by X‐ray diffraction (Fig. 4). The HpzNO2 serves as N‐monodentate ligand, which coordinates to the AgI center through its pyrazole N‐atom giving rise to an almost linear N Ag N geometry. The planar NO counterion bridges two adjacent AgI centers to form a one‐dimensional zigzag‐shaped chain which is also supported by the presence of N H⋅⋅⋅O bonds between the pyrazole NH group of adjacent cationic entities and the remaining O‐atom of the bridging NO (Fig. 5). The chains are further extended to a two‐dimensional layer‐like structure through additional Ag⋅⋅⋅O interactions involving the NO2 substituents at the pyrazole ligands (Fig. 6).  相似文献   

19.
The lanthanide chloride ortho‐oxomolybdates LnCl[MoO4] (Ln = La, Ce, Pr) crystallize in the monoclinic space group P21/c(a = 1921–1906 pm, b ≈? 580 pm, c = 804–789 pm, β ≈? 90.04°, Z = 8).In the crystal structure, two crystallographically unique Ln3+ cations are present, both with the same coordination environment of four Cl and six O2– anions in the shape of a distorted tetracapped trigonal prism. The two distinguishable Cl anions both display a coordination sphere of three plus one Ln3+ cations, building up distorted tetrahedra. These are fused together via four common edges to form litharge‐analogous layers (e = edge‐connecting) parallel to the (100) plane. Two crystallographically different oxomolybdate units are also found in the structure, which can be best described as strandsof apically vertex‐shared [MoO5]4– trigonal bipyramids of the formula (v = vertex‐connecting, t = terminal) along [001]. These building blocks, the layers and the chains are alternately stacked along the a axis. The peculiarity of this structure is expressed by the position of the Mo6+ cations, which are not situated in the center of the bipyramids, but reside offset in their lower or upper trigonal pyramids (≈? tetrahedra). The Mo6+ cations with an x / a parameter between 0 and 0.5 can be found within the lower trigonal pyramids of those bipyramids (if viewed along the [001] direction), whereas those with 0.5 < x / a < 1 are located in the upper trigonal pyramid. Therefore, an alternating arrangement of the strands is observed. Due to the special constitution of the Ln3+ cations in distorted litharge‐analogous layers, a special magnetic effect was assumed, but in phase‐pure samples of e.g. CeCl[MoO4] mainly Curie–Weiss behavior could be detected.  相似文献   

20.
Two new large molecular rectangles ( 4 and 5 ) were obtained by the reaction of two different dinuclear arene ruthenium complexes [Ru2(arene)2(O O)2Cl2] (arene=p‐cymene; O O=2,5‐dihydroxy‐1,4‐benzoquinonato ( 2 ), 6,11‐dihydroxy‐5,12‐naphthacene dionato ( 3 )) with the unsymmetrical amide (N‐[4‐(pyridin‐4‐ylethynyl)phenyl]isonicotinamide) donor ligand 1 in methanol in the presence of AgO3SCF3, forming tetranuclear cations of the general formula [Ru4(arene)4( )2(O O)2]4+. Both rectangles were isolated in good yields as triflate salts and were characterized by multinuclear NMR, ESI‐MS, UV/Vis, and photoluminescence spectroscopy. The crystal structure of 5 was determined by X‐ray diffraction. Luminescent rectangle 5 was used for anion sensing with an amide ligand as a hydrogen‐bond donor and an arene–ruthenium acceptor as a signaling unit. Rectangle 5 strongly bound multicarboxylate anions, such as oxalate, tartrate, and citrate, in UV/Vis titration experiments in 1:1 ratios, in contrast to monoanions, such as F?, Cl?, NO3?, PF6?, CH3COO?, and C6H5COO?. The fluorescence titration experiment showed a large fluorescence enhancement of 5 upon binding to multicarboxylate anions, which could be attributed to blocking of the photoinduced electron transfer process from the arene–ruthenium moiety to the amidic donor in 5 ; this was likely to be a result of hydrogen bonding between the ligand and the anion. On the other hand, rectangle 5 was not selective towards any other anions. To the naked eye, multicarboxylate anions in a solution of 5 in methanol appear greenish upon irradiation with UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号