首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The gas‐phase reactions between Pt and NH3 have been investigated using the relativistic density functional approach (ZORA‐PW91/TZ2P). The quartet and doublet potential energy surfaces of Pt + NH3 have been explored. The minimum energy reaction path proceeds through the following steps: Pt(4Σu) + NH3 → q‐1 → d‐2 → d‐3 → d‐4 → d‐Pt2NH+ + H2. In the whole reaction pathway, the step of d‐2 → d‐3 is the rate‐determining step with a energy barrier of 36.1 kcal/mol, and exoergicity of the whole reaction is 12.0 kcal/mol. When Pt2NH+ reacts with NH3 again, there are two rival reaction paths in the doublet state. One is degradation of NH and another is loss of H2. In the case of degradation of NH, the activation energy is only 3.4 kcal/mol, and the overall reaction is exothermic by 8.9 kcal/mol. Thus, this reaction is favored both thermodynamically and kinetically. However, in the case of loss of H2, the rate‐determining step's energy barrier is 64.3 kcal/mol and the overall reaction is endothermic by 8.5 kcal/mol, so it is difficult to take place. Predicted relative energies and barriers along the suggested reaction paths are in reasonable agreement with experimental observations. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

2.
At DFT/B3LYP/6‐31G** theoretical level, C6H and C (n = 0, ?2, and +2), C6H and C (n = 0, ±2, ±4, and ±6), C6H (n = 0–6), as well as C6H6‐A and C6‐A (A = Be, B, N, O, Mg, Al, Si, S, and Fe) structures were investigated. Comparing NICS values of C6H and C (n = 0, ?2, and +2), we discovered that C6H, C6H were antiaromatic, and C6H6, C6, C, C had aromaticity with negative NICS values. According to research of C6H and C (n = 0, ±2, ±4, ±6), C6H (n = 0–6), we sustained that their σ and π orbit were different and the locations of electrons were difficult to confirm in ionic structures. Thus, neither 4n + 2 rule nor NICS values can precisely estimate the aromaticity of ionic structures. Besides, through WBI (NBO) research of C6H6‐A and C6‐A (A = Be, B, N, O, Mg, Al, Si, S, and Fe) structures, we found that C6H6 was easy to accept electrons, contrarily, C6 was prone to bestowing electrons. Moreover, C6H6 took the symmetrical carbon atoms form feeble interaction or bond, and C6 used all carbon atoms to impact with other atom. C6H6 generated two contrapuntal single bonds with oxygen, sulfur, and nitrogen atoms, whereas C6 molecule formed double bond with oxygen and nitrogen atoms, two conjoint single bonds with sulfur atom. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

3.
Hyperfine coupling constants (HFCC ) of the 19F and 35Cl atoms and the 19F and 35Cl radical anions have been calculated by the unrestricted Hartree–Fock (UHF ) method using polarization and diffuse functions with contracted double-zeta as well as uncontracted basis sets. The Adip values are fairly insensitive to changes in the basis set and show good accordance with experimental and other theoretical studies. The isotropic HFCCS aN of 19F, 19F, and 35Cl show strong dependence on d functions and the state of contraction of the s, p set. Spin-projected UHF wave functions lead to better agreement with experiment.  相似文献   

4.
An algorithm for evaluation of two‐center, three‐electron integrals with the correlation factors of the type rr and rrr as well as four‐electron integrals with the correlation factors rrr and rrr in the Slater basis is presented. This problem has been solved here in elliptical coordinates, using the generalized and modified form of the Neumann expansion of the interelectronic distance function r for k ≥ ?1. Some numerical results are also included. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

5.
Silicon analogs of aromatic monocyclic ions, (SiH) ( 4 ), (SiH) ( 5 ), and (SiH) ( 6 ) have been studied ab initio at MP 2(full)/6-31G *. The D3h structure of Si3H3+ is the global minimum, whereas other two ions are nonplanar. The D2d structure of (SiH) is less folded than the carbon analog and possesses a higher stabilization energy. Stabilization energies for the monocharged ions are diminished with respect to the corresponding carbons © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The time‐dependent‐wave‐packet method is applied to study the ionization of Br2 molecule with four ionization processes. The ground state absorption makes the photoelectron to be left in the three final ionic states: Br (X2∑), Br (A2u), and Br (B2∑), and each population of these ionic states is related with the laser intensities. The information of the dissociation can be got by analyzing the photoelectron features of the transient wave packet, which also suggests that an ionization process occurs during the dissociation, and the Br atoms that mainly resulted from the dissociation of Br2 (C1u) are ionized at later time delays as the dissociation is nearly complete. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
The hybrid orbitals of tetrahedral oxy-ions containing some d character have been calculated by maximum overlap method. The d characters of hybrid orbitals increase in the order of SiO, PO, SO, ClO, and decrease in order of GeO, AsO, SeO, BrO. The bond strengths are also obtained for these ions. The hybrid Orbital of VO, CrO, and MnO are of the type d3s as the result of calculation.  相似文献   

8.
Multiconfiguration (MC ) SCF calculations are reported for CO2 for bond angles between 60° and 180°. The ground state configuration is found to be …?5a4bba for small bending angles and …?6a3bba for large bending angles, the change in ground state character occurring at a bond angle of about 100°. The force constant for bending obtained from the MC –SCF function is about 8.0% lower than the corresponding SCF value, and in considerably better agreement with experiment.  相似文献   

9.
The structures and relative stability of the maximum‐spin n+1Aun and nAu (n = 2–8) clusters have been determined by density‐functional theory. The structure optimizations and vibrational frequency analysis are performed with the gradient‐corrections of Perdew along with his 1981 local correlation functional, combined with SBKJC effective core potential, augmented in the valence basis set by a set of f functions. We predicted the existence of a number of previously unknown isomers. The energetic and electronic properties of the small high‐spin gold clusters are strongly dependent on sizes. The high‐spin clusters tend to holding three‐dimensional geometry rather than planar form preferred in low‐spin situations. In whole high‐spin Aun (n = 2–8) neutral and cationic species, 5Au4, 2Au, and 4Au are predicted to be of high stability, which can be explained by valence bond theory. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

10.
In this paper, the efficient evaluation of the atomic integrals I =∫rrrrrrer1?βr2?γr3dτ with one or two factors r is described. These integrals are necessary for a lower-bound calculation for Li-like systems using the method of variance minimization or Temple's formula. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
We have determined the dynamic dipole (α1), quadrupole (α2), octupole (α3), and dipole–dipole–quadrupole (B) polarizabilities and the second hyperpolarizability tensor (γ) for the helium atom in its lowest triplet state (23S). We have done so for both real and imaginary frequencies: in the former case, for a range of frequencies (ω) between zero and the first electronic-transition frequency, and in the latter case for a 32-point Gauss–Legendre grid running from zero to ?ω = 20 Eh. We have also determined the dispersion-energy coefficients C6, C8, and C10 for the systems H(12S)? He(23S), He(11S)? He(23S), and He(23S)? He(23S) and the C, C, C, C, and C coefficients for the interaction He(23S)? H2(X1∑). Our values of the higher-order multipolar polarizabilities and of γ for the 23S state of helium are, we believe, the first to be published. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
A pseudo‐potential that was successfully employed in an earlier study by the Compton group is used to describe the binding of a single electron to a C60 molecule to form C. Then, the interaction of a second electron with the C anion is treated in two manners. First, as performed in the earlier Compton study, a mean‐field (i.e., Hartree–Fock) approach is used to estimate the C‐to‐C energy difference for the singlet state of the dianion and, much as in the earlier study, this dianion is predicted to be unstable by ∼0.4 eV. Second, for this same singlet state, a configuration interaction wave function is employed that allows for the angular correlation of the two excess electrons, allowing them to avoid one another by moving on opposite sides of the C60 skeleton. The energy of the dianion is lowered by 0.3 eV when angular correlation is included, suggesting that the singlet dianion is unstable with respect to electron loss by only ∼0.1 eV. A Coulomb barrier (>1 eV high) and angular momentum barriers then combine to trap electrons of singlet C from detaching, thus producing the very long observed lifetimes. In addition, the energy of the lowest triplet state of C is also discussed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

13.
n1,3S (n = 1 ? 4) states for atomic three‐body systems are studied with the Angular Correlated Configuration Interaction method. A recently proposed angularly correlated basis set is used to construct, simultaneously and with a single diagonalization, ground and excited states wave functions which: (i) satisfy exactly Kato cusp conditions at the two‐body coalescence points; (ii) involve only linear parameters; (iii) show a fast convergency rate for the energy; and (iv) form an orthogonal set. The efficiency of the method is illustrated by the study a variety of three‐body atomic systems [m m m] with two negatively charged light particles, with diverse masses m and m, and a heavy positively charged nucleus m. The calculated ground 11S and excited n1,3S (n = 2 ? 4) state energies are compared with those given in the literature, when available. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
The hydrogenated silicon clusters structures, electron affinities, and dissociation energies of the Si6Hn/Si6H (n = 3?14) species have been systematically investigated by means of three density functional theory (DFT) methods. The basis set used in this work is of double‐ζ plus polarization quality with additional diffuse s‐ and p‐type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. Three different types of energy separations presented in this work are the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The first Si? H dissociation energies De (Si6Hn→ Si6Hn?1+H) for the neutral Si6Hn and De (Si6H→Si6H+H) for the anionic Si6H species have also been reported. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

15.
The equilibrium geometries, total electronic energies, and vibrational frequencies for singlet, triplet, and quinted states of three all‐metal X (X = Sc, Y, and La) anions and nine relevant neutral singlet MX3 (M = Li, Na, K, X = Sc, Y, La) clusters are investigated with four density functional theory (DFT) and correlated ab initio methods B3LYP, B3PW91, MP2, and CCSD(T). To our knowledge, the theoretical study on these clusters composed of the transition metal Sc, Y, La is first reported here. The calculated results show that for the X clusters the singlet states with trigonal D3h structures are the lowest energetically, while the neutral singlet MX3 clusters each have two stable isomers: one trigonal pyramidal C3v and one bidentate C2v structures with the pyramidal C3v isomer being ground state. In addition, we calculate the resonance energies (RE) and nucleus‐independent chemical shift (NICS) for the singlet trigonal X rings and show that these singlet trigonal X rings exhibit higher degree of aromaticity. The detailed molecular orbital (MO) analyses reveal that the singlet trigonal X anions have one delocalized σ‐type and one delocalized π‐type MOs, which follow the 4n + 2 electron counting rule, respectively and play an important role in rendering these species two‐fold aromaticity. Here, an explicit theoretical evidence is given to prove that the contribution to the two‐fold aromaticity of the singlet trigonal X (X = Sc, Y, and La) rings originates primarily from the d‐orbital bonding interactions of these component transition metal X atoms. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

16.
We have calculated certain dynamic polarizabilities (for both real and imaginary frequencies) for H, He, and H2 and the dispersion-energy coefficients for long-range interactions between them. We have done so in a sum-over-states formalism with explicitly electron-correlated wave functions to describe the states. To be precise, we have determined the dipole (α1), quadrupole (α2), and octupole (α3) polarizabilities of H and He for real frequencies (ω) in a range between zero and the first electronic-transition frequency and for imaginary frequencies (iω) on a 32-point Gauss-Legendre grid running from zero to ?ω = 20 Eh, and for H2, we have found the dipole (α), quadrupole (C), and dipole–octupole (E) polarizability tensors for the same real and imaginary frequencies. The dispersion-energy coefficients, obtained by combining the sum-over-states for-malism for the polarizabilities with analytic integration over ω, gave values of C6, C8, and C10 for the atom–atom systems; C, C, C, C, and C for the atom–diatom systems; and C6, C and C for the H2? H2 system. Nearly all the results are considered to be more reliable than those hitherto published and some have been obtained for the first time, e.g., C(iω), E(ω), and E(iω) for H2 and C, C, and C for the H? H2 system. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Molecular mechanics and molecular dynamics calculations were carried out in vacuo for 1 and for the complexes of 1 with alkali metal cations and t-BuNH. The calculations identify perching and nesting conformations of the complexes not available from X-ray data. For the Li+ ? 1 complex, the MD simulations identify a new global minimum not found by the molecular mechanics calculation. In general, the net favorable ion-spherand complexation energy is due to the offset of the unfavorable reorganization energy of the spherand by the overwhelmingly favorable electrostatic component of the ion-spherand interaction energy. The host is least preorganized for the binding of Li+ and, even in its complexed conformation, presents the least steric complementarity to this ion. The complexation energy becomes significantly more favorable due to a large increase in the electrostatic complementarity of the ion binding site when the spherand adopts its complexed conformation. Correction of the calculated complexation energy by the experimental free energy of ion aqueous desolvation leads to results in line with the findings of Cram and co-workers that K+ is the most, and Li+ the least, favorably bound by 1 .  相似文献   

18.
We show that, in the high‐density limit, restricted Møller‐Plesset (RMP) perturbation theory yields E = π?2(1 ? ln 2) ln rs + O(r) for the correlation energy per electron in the uniform electron gas, where rs is the Seitz radius. This contradicts an earlier derivation which yielded E = O(ln|ln rs|). The reason for the discrepancy is explained. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

19.
Using variational Monte Carlo methods, we examine simple, explicitly‐correlated trial wavefunction forms for the X1Σ, B1Σ, a3Σ, b3Σ, I1Πg, C1Πu, i3Πg, c3Πu, J1Δg, and j3Δg states of the hydrogen molecule. The energies produced by our best wavefunctions are slightly above the best values in the literature. When we combine our trial wavefunction forms with the generalized Feynman‐Kac path integral method, our results are in excellent agreement with the best nonrelativistic values for these systems except for the I1Πg state. Our best energy for this state, ?0.65951554(6), is lower by several microhartrees than that obtained by Wolniewicz [J Mol Spectrosc 1995, 169, 329]. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

20.
The calculus of the overlap integral for two states represented by the vibrational wave functions ψ and ψ is reduced to that of the Franck–Condon integral ?(0, x) = ∫ ψψ (t) dt. It is proved that for “numerical potentials” (as well as for a Dunham potential), this integral is given on each interval by a simple analytic expression in terms of the two potentials. The Franck–Condon factors are well determined by “coupling constants” related uniquely to the coordinates of the turning points of the potentials. An application to the band system BII? XΣ of Nα2 is compared with the usual numerical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号