首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
The title molecular salt, C8H12N+·C26H21O3, contains a dimeric indane pharmacophore that demonstrates potent anti‐inflammatory activity. The indane group of the anion exhibits some disorder about the α‐C atom, which appears common to many structures containing this group. A model to account for the slight disorder was attempted, but this was deemed unsuccessful because applying bond‐length constraints to all the bonds about the α‐C atom led to instability in the refinement. The absolute configuration was determined crystallographically as S,S,S by anomalous dispersion methods with reference to both the Flack parameter and Bayesian statistics on Bijvoet differences. The configuration was also determined by an a priori knowledge of the absolute configuration of the (1S)‐1‐phenylethanaminium counter‐ion. The molecules pack in the crystal structure to form an infinite two‐dimensional hydrogen‐bond network in the (100) plane of the unit cell.  相似文献   

7.
8.
9.
10.
Condensation of 1‐arylhydrazono‐1‐benzotriazol‐1‐yl 2‐propanones ( 5a‐c ) with DMF DMA afforded 1‐aryl‐3‐benzotriazol‐1‐yl‐1,4‐dihydropyridazine‐4‐ones ( 8a‐c ). While condensation of 1‐functionally substituted methylbenzotriazoles 3b,c with 2‐arylhydrazono‐3‐oxoarylpropanal 13a,b give 3‐aroyl‐5‐(benzo‐triazolyl‐1‐yl)‐1,6‐dihydro‐1‐phenylpyridazine‐6‐ones and 6‐imines 14a‐d.  相似文献   

11.
12.
13.
14.
1H‐1, 3‐Benzazaphospholes react with M(CO)5(THF) (M = Cr, Mo, W) to give thermally and relatively air stable η1‐(1H‐1, 3‐Benzazaphosphole‐P)M(CO)5 complexes. The 1H‐ and 13C‐NMR‐data are in accordance with the preservation of the phosphaaromatic π‐system of the ligand. The strong upfield 31P coordination shift, particularly of the Mo and W complexes, forms a contrast to the downfield‐shifts of phosphine‐M(CO)5 complexes and classifies benzazaphospholes as weak donor but efficient acceptor ligands. Nickelocene reacts as organometallic species with metalation of the NH‐function. The resulting ambident 1, 3‐benzazaphospholide anions prefer a μ2‐coordination of the η5‐CpNi‐fragment at phosphorus to coordination at nitrogen or a η3‐heteroallyl‐η5‐CpNi‐semisandwich structure. This is shown by characteristic NMR data and the crystal structure analysis of a η5‐CpNi‐benzazaphospholide. The latter is a P‐bridging dimer with a planar Ni2P2 ring and trans‐configuration of the two planar heterocyclic phosphido ligands arranged perpendicular to the four‐membered ring.  相似文献   

15.
16.
The title compund, [Fe(C5H6N)(C7H7O2)], features one strong intermolecular hydrogen bond of the type N—H...O=C [N...O = 3.028 (2) Å] between the amine group and the carbonyl group of a neighbouring molecule, and vice versa, to form a centrosymmetric dimer. Furthermore, the carbonyl group acts as a double H‐atom acceptor in the formation of a second, weaker, hydrogen bond of the type C—H...O=C [C...O = 3.283 (2) Å] with the methyl group of the ester group of a second neighbouring molecule at (x, −y − , z − ). The methyl group also acts as a weak hydrogen‐bond donor, symmetry‐related to the latter described C—H...O=C interaction, to a third molecule at (x, −y − , z + ) to form a two‐dimensional network. The cyclopentadienyl rings of the ferrocene unit are parallel to each other within 0.33 (3)° and show an almost eclipsed 1,1′‐conformation, with a relative twist angle of 9.32 (12)°. The ester group is twisted slightly [11.33 (8)°] relative to the cylopentadienyl plane due to the above‐mentioned intermolecular hydrogen bonds of the carbonyl group. The N atom shows pyramidal coordination geometry, with the sum of the X—N—Y angles being 340 (3)°.  相似文献   

17.
The crystal structure and absolute configuration of the title compound, C17H21BrO8, have been determined by X‐ray analysis. They confirmed the 1′R absolute configuration at the 1′‐bromoethyl moiety which has been assigned previously on the basis of chemical and spectroscopic data. Cohesion of the crystal can be attributed to weak intermolecular C—H?O and van der Waals interactions.  相似文献   

18.
A novel conversion of 2, 4‐diaryl‐2, 3‐dihydro‐1 H‐1, 5‐benzodiazepins into 2, 4‐diaryl‐3 H‐1, 5‐benzodiazepines by the reaction with m‐chloroperbenzoic acid (MCPBA) was reported.  相似文献   

19.
20.
The kinetics and mechanisms of the dehydrochlorination of 2‐chloro‐1‐ phenylethane, 3‐chloro‐1‐phenylpropane, 4‐chloro‐1‐phenylbutane, 5‐chloro‐1‐phenylpentane, and their corresponding chloroalkanes were examined by means of electronic structure calculation using density functional theory methods B3LYP/6–31G(d,p), B3LYP/6–31++G(d,p), MPW1PW91/6–31G(d,p), MPW1PW91/6–31++G(d,p), PBEPBE/6–31G(d,p), and PBEPBE/6–31++G(d,p). The potential energy surface was investigated for the minimum energy path. Calculated enthalpies and energies of activation are in good agreement with experimental values using the MPW1PW91 and B3LYP methods. The transition state of these reactions is a four‐centered cyclic structure. The reported experimental results proposing neighboring group participation by the phenyl group was not supported by theoretical calculations. The rate‐determining process in these reactions is the breaking of Cl? C bond. The reactions are described as concerted moderately polar and nonsynchronous. © 2011 Wiley Peiodicals, Inc. Int J Chem Kinet 43: 292–302, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号