共查询到20条相似文献,搜索用时 0 毫秒
1.
A series of novel poly(thioether ether ketone imide)s (PTEKIs) bearing the thioether and ketone groups with high molecular weights (Mw: 87,800–150,100 g/mol) were synthesized by aromatic nucleophilic substitution reaction. The polymers were characterized by Fourier transform infrared spectra (FT‐IR), 1H NMR, GPC, and elemental analysis. The composition of the copolymers varied systematically in order to study its relation with polymer properties. Increase in the content of 3‐substituted phthalimide moiety in the polymer backbone improves the solubility in tested solvents, and increases the glass transition temperature (Tg), whereas copolymers with high content of 3‐substituted phthalimide demonstrated to be inferior thermal stability. The PTEKI films also exhibited good optical transparency, including the cutoff wavelengths lower than 400 nm and transmittances higher than 77% at 450 nm. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
2.
Haibing Wei Xueliang Pei Xingzhong Fang 《Journal of polymer science. Part A, Polymer chemistry》2011,49(11):2484-2494
Three isomeric bis(thioether anhydride) monomers, 4,4′‐bis(2,3‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,3′‐PTPKDA), 4,4′‐bis(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (4,4′‐PTPKDA), and 4‐(2,3‐dicarboxyphenylthio)‐4′‐(3,4‐dicarboxyphenylthio) diphenyl ketone dianhydride (3,4′‐PTPKDA), were prepared through multistep reactions. Their structures were determined via Fourier transform infrared, NMR, and elemental analysis. Three series of polyimides (PIs) were prepared from the obtained isomeric dianhydrides and aromatic diamines in N‐methyl‐2‐pyrrolidone (NMP) via the conventional two‐step method. The PIs showed excellent solubility in common organic solvents such as chloroform, N,N‐dimethylacetamide, and NMP. Their glass‐transition temperatures decreased according to the order of PIs on the basis of 3,3′‐PTPKDA, 3,4′‐PTPKDA, and 4,4′‐PTPKDA. The 5% weight loss temperatures (T5%) of all PIs in nitrogen were observed at 504–519 °C. The rheological properties of isomeric PI resins based on 3,3′‐PTPKDA/4,4′‐oxydianiline/phthalic anhydride showed lower complex viscosity and better melt stability compared with the corresponding isomers from 4,4′‐ and 3,4′‐PTPKDA. In addition, the PI films based on three isomeric dianhydrides and 2,2′‐bis(trifluoromethyl)benzidine had a low moisture absorption of 0.27–0.35%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
3.
A series of isomeric poly(thioether ether imide)s (PTEIs) containing both thioether and ether linkages were prepared by nucleophilic substitution reaction of isomeric bis(chlorophthalimide)s with 4,4′‐thiobisbenzenethiol. The inherent viscosities of these polymers were in the range of 0.40–0.56 dL/g in m‐cresol at 30°C. The Tg values of PTEIs were 196–236°C; T5% values reached up to 509–529°C in nitrogen and 508–534°C in air, which indicated this kind of polyimide possessed excellent thermal stability. The hydrolytic stability was arranged in the order: a > b > c > d > e, and improved with increasing the content of 3‐substituted phthalimide unit in the polymer backbone. Flexible films could be cast from the polymer solution with a solid content of 10%. The PTEI films exhibited good mechanical properties with tensile strengths of 90–104 MPa, elongations at break of 6.6–7.9%, and tensile moduli of 2.3–2.6 GPa. The minimum complex viscosity of PTEIs c was about 100 Pa·s at 310°C and the minimum melt viscosity of PTEIs (a–e) decreased with increasing the content of unsymmetrical 3,4′‐substituted phthalimide units. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
《Journal of polymer science. Part A, Polymer chemistry》2018,56(10):1058-1066
Two novel bio‐based diamines are synthesized through introduction of renewable 2,5‐furandicarboxylic acid (2,5‐FDCA), and the corresponding aromatic polyimides (PIs) are then prepared by these diamines with commercially available aromatic dianhydrides via two‐step polycondensation. The partially bio‐based PIs possess high glass transition temperatures (Tgs) in the range from 266 to 364 °C, high thermal stability of 5% weight loss temperatures (T5%s) over 420 °C in nitrogen and outstanding mechanical properties with tensile strengths of 79–138 MPa, tensile moduli of 2.5–5.4 GPa, and elongations at break of 3.0–12.3%. Some colorless PI films (PI‐1‐b and PI‐1‐c) with the transmittances at 450 nm over 85% are prepared. The overall properties of 2,5‐FDCA‐based PIs are comparable with petroleum‐based PI derived from isophthalic acid, displaying the potential for development of innovative bio‐based materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1058–1066 相似文献
5.
Sheng‐Huei Hsiao Guey‐Sheng Liou Hui‐Min Wang 《Journal of polymer science. Part A, Polymer chemistry》2009,47(9):2330-2343
A new triphenylamine‐containing aromatic diamine monomer, N,N‐bis(4‐aminophenyl)‐N′,N′‐bis(4‐tert‐butylphenyl)‐1,4‐phenylenediamine, was synthesized by an established synthetic procedure from readily available reagents. A novel family of electroactive polyamides with di‐tert‐butyl‐substituted N,N,N′,N′‐tetraphenyl‐1,4‐phenylenediamine units were prepared via the phosphorylation polyamidation reactions of the newly synthesized diamine monomer with various aromatic or aliphatic dicarboxylic acids. All the polymers were amorphous with good solubility in many organic solvents, such as N‐methyl‐2‐pyrrolidinone (NMP) and N,N‐dimethylacetamide, and could be solution‐cast into tough and flexible polymer films. The polyamides derived from aromatic dicarboxylic acids had useful levels of thermal stability, with glass‐transition temperatures of 269–296 °C, 10% weight‐loss temperatures in excess of 544 °C, and char yields at 800 °C in nitrogen higher than 62%. The dilute solutions of these polyamides in NMP exhibited strong absorption bands centered at 316–342 nm and photoluminescence maxima around 362–465 nm in the violet‐blue region. The polyamides derived from aliphatic dicarboxylic acids were optically transparent in the visible region and fluoresced with a higher quantum yield compared with those derived from aromatic dicarboxylic acids. The hole‐transporting and electrochromic properties were examined by electrochemical and spectro‐electrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide‐coated glass substrate exhibited two reversible oxidation redox couples at 0.57–0.60 V and 0.95–0.98 V versus Ag/AgCl in acetonitrile solution. The polyamide films revealed excellent elcterochemical and electrochromic stability, with a color change from a colorless or pale yellowish neutral form to green and blue oxidized forms at applied potentials ranging from 0.0 to 1.2 V. These anodically coloring polymeric materials showed interesting electrochromic properties, such as high coloration efficiency (CE = 216 cm2/C for the green coloring) and high contrast ratio of optical transmittance change (ΔT%) up to 64% at 424 nm and 59% at 983 nm for the green coloration, and 90% at 778 nm for the blue coloration. The electroactivity of the polymer remains intact even after cycling 500 times between its neutral and fully oxidized states. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2330–2343, 2009 相似文献
6.
Qingxuan Li Xingzhong Fang Zhen Wang Lianxun Gao Mengxian Ding 《Journal of polymer science. Part A, Polymer chemistry》2003,41(21):3249-3260
2,2′,3,3′‐Oxydiphthalic dianhydride (2,2′,3,3′‐ODPA) and 2,3,3′,4′‐ODPA were synthesized from 3‐chlorophthalic anhydride with 2,3‐xylenol and 3,4‐xylenol, respectively. Their structures were determined via single‐crystal X‐ray diffraction. A series of polyimides derived from isomeric ODPAs with several diamines were prepared in dimethylacetamide (DMAc) with the conventional two‐step method. Matrix‐assisted laser desorption/ionization time‐of‐flight spectra showed that the polymerization of 2,2′,3,3′‐ODPA with 4,4′‐oxydianiline (ODA) has a greater trend to form cyclic oligomers than that of 2,3,3′,4′‐ODPA. Both 2,2′,3,3′‐ODPA and 2,3,3′,4′‐ODPA based polyimides have good solubility in polar aprotic solvents such as DMAc, dimethylformamide, and N‐methylpyrrolidone. The 5% weight‐loss temperatures of all polyimides were obtained near 500 °C in air. Their glass‐transition temperatures measured by dynamic mechanical thermal analysis or differential scanning calorimetry decreased according to the order of polyimides on the basis of 2,2′,3,3′‐ODPA, 2,3,3′,4′‐ODPA, and 3,3′,4,4′‐ODPA. The wide‐angle X‐ray diffraction of all polyimide films from isomeric ODPAs and ODA showed some certain extent of crystallization after stretching. Rheological properties revealed that polyimide (2,3,3′,4′‐ODPA/ODA) has a comparatively lower melt viscosity than its isomers, which indicated its better melt processability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3249–3260, 2003 相似文献
7.
Guey‐Sheng Liou Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2002,40(15):2564-2574
A new N‐phenylated amide (N‐phenylamide) unit containing aromatic diamine, N,N′‐bis(3‐aminobenzoyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was prepared by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 3‐nitrobenzoyl chloride, followed by catalytic reduction. Two series of organosoluble aromatic poly(N‐phenylamide‐imide)s and poly(N‐phenylamide‐amide)s with inherent viscosities of 0.58–0.82 and 0.56–1.21 dL/g were prepared by a conventional two‐stage method and the direct phosphorylation polycondensation, respectively, from the diamine with various aromatic dianhydrides and aromatic dicarboxylic acids. All polyimides and polyamides are amorphous and readily soluble in many organic solvents such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone. These polymers could be solution cast into transparent, tough, and flexible films with high tensile strengths. These polyimides and polyamides had glass‐transition temperatures in the ranges of 230–258 and 196–229 °C, respectively. Decomposition temperatures of the polyimides for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2564–2574, 2002 相似文献
8.
Chin‐Ping Yang Sheng‐Huei Hsiao Che‐Yu Tsai Guey‐Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》2004,42(10):2416-2431
Two series of fluorinated polyimides were prepared from 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)biphenyl ( 2 ) and 2,2′‐bis(4‐amino‐2‐trifluoromethylphenoxy)‐1,1′‐binaphthyl ( 4 ) with various aromatic dianhydrides via a conventional, two‐step procedure that included a ring‐opening polyaddition to give poly(amic acid)s, followed by chemical or thermal cyclodehydration. The inherent viscosities of the polyimides ranged from 0.54 to 0.73 and 0.19 to 0.36 dL/g, respectively. All the fluorinated polyimides were soluble in many polar organic solvents, such as N,N‐dimethylacetamide and N‐methylpyrrolidone, and afforded transparent and light‐colored films via solution‐casting. These polyimides showed glass‐transition temperatures in the ranges of 222–280 and 257–351 °C by DSC, softening temperatures in the range of 264–301 °C by thermomechanical analysis, and a decomposition temperature for 10% weight loss above 520 °C both in nitrogen and air atmospheres. The polyimides had low moisture absorptions of 0.23–0.58%, low dielectric constants of 2.84–3.61 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 351–434 nm. Copolyimides derived from the same dianhydrides with an equimolar mixture of 4,4′‐oxydianiline and diamine 2 or 4 were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2416–2431, 2004 相似文献
9.
Xing‐Zhong Fang Qing‐Xuan Li Zhen Wang Zheng‐Hua Yang Lian‐Xun Gao Meng‐Xian Ding 《Journal of polymer science. Part A, Polymer chemistry》2004,42(9):2130-2144
A new synthetic route to 2,2′,3,3′‐BTDA (where BTDA is benzophenonetetracarboxylic dianhydride), an isomer of 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA, is described. Single‐crystal X‐ray diffraction analysis of 2,2′,3,3′‐BTDA has shown that this dianhydride has a bent and noncoplanar structure. The polymerizations of 2,2′,3,3′‐BTDA with 4,4′‐oxydianiline (ODA) and 4,4′‐bis(4‐aminophenoxy)benzene (TPEQ) have been investigated with a conventional two‐step process. A trend of cyclic oligomers forming in the reaction of 2,2′,3,3′‐BTDA and ODA has been found and characterized with IR, NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and elemental analyses. Films based on 2,2′,3,3′‐BTDA/TPEQ can only be obtained from corresponding polyimide (PI) solutions prepared by chemical imidization because those from their polyamic acids by thermal imidization are brittle. PIs from 2,2′,3,3′‐BTDA have lower inherent viscosities and worse thermal and mechanical properties than the corresponding 2,3′,3′,4′‐BTDA‐ and 3,3′,4,4′‐BTDA‐based PIs. PIs from 2,2′,3,3′‐BTDA and 2,3′,3′,4′‐BTDA are amorphous, whereas those from 3,3′,4,4′‐BTDA have some crystallinity, according to wide‐angle X‐ray diffraction. Furthermore, PIs from 2,2′,3,3′‐BTDA have better solubility, higher glass‐transition temperatures, and higher melt viscosity than those from 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA. Model compounds have been prepared to explain the order of the glass‐transition temperatures found in the isomeric PI series. The isomer effects on the PI properties are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2130–2144, 2004 相似文献
10.
N,N,N′,N′‐tetraalkyaminoazoxybenzene derivatives were conveniently prepared by the coupling of N,N‐dialkylnitrosoaniline in the presence of acetone and KOH. The reaction mechanism was proposed and investigated, and the structure of compound 3b was also confirmed by single crystal X‐ray diffractometry. 相似文献
11.
Sheng‐Huei Hsiao Chin‐Ping Yang Cheng‐Lin Chung 《Journal of polymer science. Part A, Polymer chemistry》2003,41(13):2001-2018
A new trifluoromethyl‐substituted bis(ether amine) monomer, 2,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized. It led to a series of novel fluorinated polyimides by thermal and chemical imidization routes when reacted with various commercially available aromatic tetracarboxylic dianhydrides. Most of the polyimides obtained from both routes were soluble in many organic solvents, such as N,N‐dimethylacetamide. All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.3–0.6%, low dielectric constants of 2.52–3.27 at 10 kHz, and an ultraviolet–visible absorption cutoff wavelength at 377–436 nm. The glass‐transition temperatures of the polyimides were in the range of 244–297 °C, and the 5% weight‐loss temperatures were higher than 550 °C. For a comparative study, a series of analogous polyimides based on 2,7‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2001–2018, 2003 相似文献
12.
A series of thermotropic liquid crystalline polyurethanes (LCPUs) were synthesized by the polyaddition reactions of 2,4‐toluene diisocyanate (2,4‐TDI) with 4,4′‐bis(6‐hydroxyhexoxy)biphenyl (BHHBP) and aliphatic diol. The intrinsic viscosities of the polymers were measured by Ubbelohde viscometer, and the chemical structure was confirmed by Fourier transform infrared spectroscopy (FT‐IR). The LCPUs were examined by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA). The intrinsic viscosities were 0.56–0.83 dl/g. According to the melting point (Tm) and the isotropic temperature (Ti) of the LCPUs, the temperature range of the liquid crystalline phase became wider with increased number of methylene spacers in the polyurethane. The LCPUs exhibited a nematic phase with a threaded texture and had a wide mesophase temperature range. The decomposition temperature of the LCPUs was >300°C. On WAXD, the LCPUs give a dispersing peak at 2θ ≈ 20°, and a strong diffraction peak at 2θ ≈ 25°. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
13.
Mengxiang Zhu Yanzhi Xu Chenglong Ge Ying Ling Haoyu Tang 《Journal of polymer science. Part A, Polymer chemistry》2016,54(10):1348-1356
A series of OEGylated poly(γ‐benzyl‐l ‐glutamate) with different oligo‐ethylene‐glycol side‐chain length, molecular weight (MW = 8.4 × 103 to 13.5 × 104) and narrow molecular weight distribution (PDI = 1.12–1.19) can be readily prepared from triethylamine initiated ring‐opening polymerization of OEGylated γ‐benzyl‐l ‐glutamic acid based N‐carboxyanhydride. FTIR analysis revealed that the polymers adopted α‐helical conformation in the solid‐state. While they showed poor solubility in water, they exhibited a reversible upper critical solution temperature (UCST)‐type phase behavior in various alcoholic organic solvents (i.e., methanol, ethanol, 1‐propanol, 1‐butanol, 1‐pentanol, and isopropanol). Variable‐temperature UV–vis analysis revealed that the UCST‐type transition temperatures (Tpts) of the resulting polymers were highly dependent on the type of solvent, polymer concentration, side‐ and main‐chain length. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1348‐1356 相似文献
14.
Shouwen Chen Yan Yin Hidetoshi Kita Ken‐Ichi Okamoto 《Journal of polymer science. Part A, Polymer chemistry》2007,45(13):2797-2811
Three homologous sulfonated diamines bearing a bis(aminophenoxyphenyl)sulfone structure, namely, bis[4‐(4‐aminophenoxy)phenyl]sulfone‐3,3′‐disulfonic acid (pBAPPS‐3DS), bis[4‐(4‐aminophenoxy)phenyl]sulfone‐2,2′‐disulfonic acid (pBAPPS‐2DS), and bis[4‐(4‐aminophenoxy)‐2‐(3‐sulfobenzoyl)phenyl]sulfone (pBAPPS‐2DSB), were synthesized. A series of sulfonated polyimides (SPIs) were synthesized from 1,4,5,8‐naphthalene tetracarboxylic dianhydride, these sulfonated diamines, and nonsulfonated diamines, and their properties were investigated in comparison with those reported for the SPIs from another homologous diamine or bis[4‐(3‐aminophenoxy)phenyl]sulfone‐3,3′‐disulfonic acid (mBAPPS‐3DS). These SPIs were soluble in common aprotic solvents and showed reasonably high proton conductivity, except for pBAPPS‐2DS‐based SPIs, the conductivity of which was slightly lower because of the lower water uptake. The water stability of these SPIs considerably depended on the structure of the sulfonated diamines and was in the order of pBAPPS‐2DSB ≈ pBAPPS‐2DS > pBAPPS‐3DS ? mBAPPS‐3DS. Their water stability was much lower than that of the SPIs from 4,4′‐bis(4‐aminophenoxy)biphenyl‐3,3′‐disulfonic acid. The reason was discussed on the basis of the basicity of the sulfonated diamine and the solubility property of the SPIs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2797–2811, 2007 相似文献
15.
B. B. Petković S. P. Sovilj M. V. Budimir R. M. Simonović V. M. Jovanović 《Electroanalysis》2010,22(16):1894-1900
The simple PVC‐based membrane containing N,N′,N″,N′′′‐tetrakis(2‐pyridylmethyl)‐1,4,8,11‐tetraazacyclotetradecane (tpmc) as an ionophore and dibutyl phthalate as a plasticizer, directly coated on a glassy carbon electrode was examined as a new sensor for Cu2+ ions. The potential response was linear within the concentration range of 1.0×10?1–1.0×10?6 M with a Nernstian slope of 28.8 mV/decade and detection limit of 7.0×10?7 M. The electrode was used in aqueous solutions over a wide pH range (1.3–6). The sensor exhibited excellent selectivity for Cu2+ ion over a number of cations and was successfully used in its determination in real samples. 相似文献
16.
Sheng‐Huei Hsiao Chin‐Ping Yang Sheng‐Ching Huang 《Journal of polymer science. Part A, Polymer chemistry》2004,42(10):2377-2394
A novel, trifluoromethyl‐substituted, bis(ether amine) monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized through the nucleophilic displacement of 2‐chloro‐5‐nitrobenzotrifluoride with 1,4‐dihydroxynaphthalene in the presence of potassium carbonate in dimethyl sulfoxide, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides with inherent viscosities of 0.57–0.91 dL/g were prepared by reacting the diamine with six commercially available aromatic dianhydrides via a conventional, two‐step thermal or chemical imidization method. Most of the resulting polyimides were soluble in strong polar solvents such as N‐methylpyrrolidone and N,N‐dimethylacetamide (DMAc). All the polyimides afforded transparent, flexible, and strong films with good tensile properties. These polyimides exhibited glass‐transition temperatures (Tg's) (by DSC) and softening temperatures (by thermomechanical analysis) in the ranges of 252–315 and 254–301 °C, respectively. Decomposition temperatures for 5% weight loss all occurred above 500 °C in both air and nitrogen atmospheres. The dielectric constants of these polyimides ranged from 3.03 to 3.71 at 1 MHz. In addition, a series of new, fluorinated polyamides with inherent viscosities of 0.32–0.62 dL/g were prepared by the direct polycondensation reaction the diamine with various aromatic dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides were soluble in polar solvents such as DMAc and could be solution‐cast into tough and flexible films. These polyamides had Tg's between 228 and 256 °C and 10% weight‐loss temperatures above 400 °C in nitrogen or air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2377–2394, 2004 相似文献
17.
Claudio A. Terraza Jin‐Gang Liu Yasuhiro Nakamura Yuji Shibasaki Shinji Ando Mitsuru Ueda 《Journal of polymer science. Part A, Polymer chemistry》2008,46(4):1510-1520
Highly refractive and transparent polyimides (PIs) based on fluorene‐bridged and sulfur‐containing monomers have been developed. An aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), was polymerized with several fluorene‐containing diamines, including commercially available 9,9′‐bis(p‐aminophenyl)fluorene (APF), 9,9′‐bis[4‐(p‐aminophenoxy)phenyl]fluorene (OAPF), and newly synthesized 9,9′‐bis[4‐(p‐aminophenyl)sulfanylphenyl]fluorene (ASPF) to afford series A PIs. Meanwhile, series B PIs were obtained from a new dianhydride, 4,4′‐[(9H‐fluorene‐9‐ylidene)bis(p‐phenylsulfanyl)]diphthalic anhydride (FPSP) and two aromatic diamines, ASPF and 4,4′‐thiobis[(p‐phenylenesulfanyl)aniline] (3SDA) via a two‐step polycondensation procedure. The PIs exhibit good thermal stabilities, such as relatively high glass transition temperatures in the range of 220–270 °C and high initial thermal decomposition temperatures (T10%) exceeding 490 °C. The 9,9′‐disubstituted fluorene moieties endow the PI films with good optical transparency. The optical transmittances of the PI films at 450 nm are all higher than 80% for the thickness of about 10 μm. Furthermore, the highly aromatic fluorene moiety and flexible thioether linkages in the molecular chains of the PIs provide them with high refractive indices of 1.6951–1.7258 and small birefringence of 0.0056–0.0070. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1510–1520, 2008 相似文献
18.
Cheng‐Lin Chung Wen‐Fu Lee Chun‐Hung Lin Sheng‐Huei Hsiao 《Journal of polymer science. Part A, Polymer chemistry》2009,47(7):1756-1770
A novel structurally asymmetric bis(ether amine) monomer containing trifluoromethyl groups, 1,7‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was prepared through the nucleophilic substitution reaction of 2‐chloro‐5‐nitrobenzotrifluoride and 1,7‐dihydroxynaphthalene in the presence of potassium carbonate in N‐methyl‐2‐pyrrolidone (NMP), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides were synthesized from the diamine with various commercially available aromatic tetracarboxylic dianhydrides using a two‐stage process with thermal or chemical imidization method. The intermediate poly(amic acid)s had inherent viscosities between 0.93 and 1.93 dL/g. Most of the polyimides obtained from both routes were readily soluble in many organic solvents such as NMP and N,N‐dimethylacetamide (DMAc). All the polyimides could afford transparent, flexible, and strong films with low moisture absorptions of 0.29–0.69%, low dielectric constants of 2.81–3.23 at 10 kHz, and an ultraviolet‐visible absorption cutoff wavelength at 358–423 nm. The glass‐transition temperatures (Tgs) (by DSC) and softening temperatures (by thermomechanical analysis) of the polyimides were recorded in the range of 222–271 °C and 210–266 °C, respectively. Decomposition temperatures for 10% weight loss all occurred above 500 °C in both nitrogen and air atmospheres. For a comparative study, some properties of the present polyimides will be compared with those of structurally related ones derived from 1,7‐bis(4‐aminophenoxy)naphthalene and 1,5‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1756–1770, 2009 相似文献
19.
Naiheng Song Wei Qi Xuepeng Qiu Lianxun Gao Mengxian Ding 《Journal of polymer science. Part A, Polymer chemistry》2004,42(17):4318-4326
A series of optically active poly(ester imide)s (PEsI's) has been synthesized by the polycondensation reactions of new axially asymmetric dianhydrides, that is, (R)‐2,2′‐bis(3,4‐dicarboxybenzoyloxy)‐1,1′‐binaphthyl dianhydride and (S)‐2,2′‐bis(3,4‐dicarboxybenzoyloxy)‐1,1′‐binaphthyl dianhydride, and various diamines with aromatic, semiaromatic, and aliphatic structures. The polymers have inherent viscosities of 0.45–0.70 dL/g, very good solubility in common organic solvents, glass‐transition temperatures of 124–290 °C, and good thermal stability. Wide‐angle X‐ray crystallography of these polymers shows no crystal diffraction. In comparison with model compounds, an enhanced optical rotatory power has been observed for the repeat unit of optically active PEsI's based on aromatic diamines, and it has been attributed to a collaborative asymmetric perturbation of chiral 1,1′‐binaphthyls along the rigid backbones. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4318–4326, 2004 相似文献
20.
N,N′‐Dioxide/Nickel(II)‐Catalyzed Asymmetric Inverse‐Electron‐Demand Hetero‐Diels–Alder Reaction of β,γ‐Unsaturated α‐Ketoesters with Enecarbamates 下载免费PDF全文
Yuhang Zhou Yin Zhu Dr. Lili Lin Yulong Zhang Jianfeng Zheng Prof. Dr. Xiaohua Liu Prof. Dr. Xiaoming Feng 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(50):16753-16758
N,N′‐Dioxide/nickel(II) complexes have been developed to catalyze the inverse‐electron‐demand hetero‐Diels–Alder reaction of β,γ‐unsaturated α‐ketoesters with acyclic enecarbamates. After detailed screening of the reaction parameters, mild optimized reaction conditions were established, affording 3,4‐dihydro‐2H‐pyranamines in up to 99 % yield, 99 % ee and more than 95:5 d.r. The catalytic system was also efficient for β‐substituted acyclic enecarbamates, affording more challenging 2,3,4‐trisubstituted 3,4‐dihydro‐2H‐pyranamine with three contiguous stereogenic centers in excellent yields, diastereoselectivities, and enantioselectivities. The reaction could be scaled up to a gram scale with no deterioration of either enantioselectivity or yield. Based on these experiments and on previous reports, a possible transition state was proposed. 相似文献