首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cs2[Pr6(C2)]I12 — the First Quaternary Reduced Halide with Isolated [M6(C2)] Clusters . Cs2[Pr6(C2)]I12 is obtained as one of the major products from the reaction of PrI3, cesium and carbon in sealed tantalum containers at 850°C. The crystal structure triclinic, P 1 ; a=948.1(2), b=953.6(3), c=1 005.2(3) pm; α=71.01(2); β=84,68(3), γ=89.37(2)°; Z=1 contains discrete Pr6I12-type clusters elongated along the pseudo-four-fold axis to accommodate the C2 units (d(C—C)=139 pm). The clusters are connected through common i?aI and a?iI linkages at metal vertices and edges according to Cs2[Pr6(C2)iI6i?aI6/2]a?iI6/2. The cesium cations occupy interstices within the (distorted) iodide layers in a way that “Cs2I18” dimers are formed, in which Cs+ is surrounded by eleven I?. On the basis of the MO scheme of [Sc6(C2]I11, the bonding of the C2 unit is discussed and compared with other cluster compounds containing C2 units.  相似文献   

2.
New Copper Complexes Containing Phosphaalkene Ligands. Molecular Structure of [Cu{P(Mes*)C(NMe2)2}2]BF4 (Mes* = 2,4,6‐tBu3C6H2) Reaction of equimolar amounts of the inversely polarized phosphaalkene tBuP=C(NMe2)2 ( 1a ) and copper(I) bromide or copper(I) iodide, respectively, affords complexes [Cu3X3{μ‐P(tBu)C(NMe2)2}3] ( 2 ) (X =Br) and ( 3 ) (X = I) as the formal result of the cyclotrimerization of a 1:1‐adduct. Treatment of 1a with [Cu(L)Cl] (L = PiPr3; SbiPr3) leads to the formation of compounds [CuCl(L){P(tBu)C(NMe2)2}] ( 4a ) (L = PiPr3) and ( 4b ) (L = SbiPr3), respectively. Reaction of [(MeCN)4Cu]BF4 with two equivalents of PhP=C(NMe2)2 ( 1b ) yields complex [Cu{P(Ph)C(NMe2)2}2]BF4 ( 5b ). Similarly, compounds [Cu{P(Aryl)C(NMe2)2}2]BF4 ( 5c (Aryl = Mes and 5d (Aryl = Mes*)) are obtained from ArylP=C(NMe2)2 ( 1c : Aryl = Mes; 1d : Mes*) and [(MeCN)4Cu]BF4 in the presence of SbiPr3. Complexes 2 , 3 , 4a , 4b , and 5b‐5d are characterized by means of elemental analyses and spectroscopy (1H‐, 13C{1H}‐, 31P{1H}‐NMR). The molecular structure of 5d is determined by X‐ray diffraction analysis.  相似文献   

3.
Reactive E = C(pp)π-Systems. XLII [1]. Novel Coordination Compounds of 2-(Diisopropylamino)-1-phosphaethyne: [{η4-(iPr2NCP)2}Ni{η2-(iPr2NCP)}], [(Ph3P)2Pt{η2-(iPr2NCP)}], and [Co2(CO)622-(iPr2NCP)}] 2-(Diisopropylamino)-phosphaethyne iPr2N? C?P ( 2 ) reacts with the Ni(0)-complexes [Ni(1,5-cyclooctadiene)2] and [Ni(CO)3(1-azabicyclo[2.2.2]octane)], respectively, to give the novel complex [{η4-(iPr2NCP)2}Ni{η2-(iPr2NCP)}] ( 5 ), with the 1,3-diphosphacyclobutadiene derivative and 2 (side-on) as π-ligands. The molecular structure of 5 determined by X-ray diffraction on single crystals proves the spin systems and rotational barriers deduced from NMR-data (1H, 13C-, 31P). The PC distances of the four-membered ring of 1.817(2) and 1.818(2) Å – as expected – are considerably longer than the PC bond of the η2-coordinated phosphaalkyne 2 [1.671(2) Å]. – In the reactions of 2 with [(Ph3P)2Pt(C2H4)] or [Co2(CO)8] the ligand properties of 2 resemble those of alkynes affording the complexes [(Ph3P)2Pt{η2-(iPr2NCP)}] ( 7 ) with side-on coordinated 2 and [Co2(CO)622-(iPr2NCP)}] with 2 acting as a 4e donor bridge in quantitative yield. In attempts to prepare copper(I) complexes of the aminophosphaalkyne 2 by reaction with CuCl or CuI the only isolable product formed in reasonable amounts under the influence of air and moisture is the 1 λ3, 3 λ5-diphosphetene (iPr2N) ( 10 ) (isolated yield: ca. 20%). The crystal structure analysis of 10 indicates a strong structural relationship to the diamino-2-phosphaallyl cation [Me(iPr2N)]+ ( 12 ), the 1,3-diphosphacyclobutadiene ligand (iPr2NCP)2 in the binuclear complex [{η1, μ2-(iPr2NCP)2}Ni2(CO)6] ( 3a ) as well as to the heterocycles (dme)2LiOE2′ (E′ = S, 11a ; E′ = Se, 11b ) prepared by Becker et al. [11b, 35].  相似文献   

4.
We report on the synthesis of new derivatives of silylated clusters of the type [Ge9(SiR3)3]? (R = SiMe3, Me = CH3; R = Ph, Ph = C6H5) as well as on their reactivity towards copper and zinc compounds. The silylated cluster compounds were synthesized by heterogeneous reactions starting from the Zintl phase K4Ge9. Reaction of K[Ge9{Si(SiMe3)3}3] with ZnCl2 leads to the already known dimeric compound [Zn(Ge9{Si(SiMe3)3}3)2] ( 1 ), whereas upon the reaction with [ZnCp*2] the coordination of [ZnCp*]+ to the cluster takes place (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) under the formation of [ZnCp*(Ge9{Si(SiMe3)3}3)] ( 2 ). A similar reaction leads to [CuPiPr3(Ge9{Si(SiMe3)3}3)] ( 3 ) from [CuPiPr3Cl] (iPr=isopropyl). Further we investigated the novel silylated cluster units [Ge9(SiPh3)3]? ( 4 ) and [Ge9(SiPh3)2]? ( 5 ), which could be identified by mass spectroscopy. Bis‐ and tris‐silylated species can be synthesized by the respective stoichiometric reactions, and the products were characterized by ESI‐MS and NMR experiments. These clusters show rather different reactivity. The reaction of the tris‐silylated anion 4 with [CuPiPr3Cl] leads to [(CuPiPr3)3Ge9(SiPh3)2]+ as shown from NMR experiments and to [(CuPiPr3)4{Ge9(SiPh3)2}2] ( 6 ), which was characterized by single‐crystal X‐ray diffraction. Compound 6 shows a new type of coordination of the Cu atoms to the silylated Zintl clusters.  相似文献   

5.
Compounds based on new cyanide cluster anions [{Mo6I8}(CN)6]2–, trans-[{Mo6I8}(CN)4(MeO)2]2– and trans-[{W6I8}(CN)2(MeO)4]2− were synthesized using mechanochemical or solvothermal synthesis. The crystal and electronic structures as well as spectroscopic properties of the anions were investigated. It was found that the new compounds exhibit red luminescence upon excitation by UV light in the solid state and solutions, as other cluster complexes based on {Mo6I8}4+ and {W6I8}4+ cores do. The compounds can be recrystallized from aqueous methanol solutions; besides this, it was shown using NMR and UV-Vis spectroscopy that anions did not undergo hydrolysis in the solutions for a long time. These facts indicate that hydrolytic stabilization of {Mo6I8} and {W6I8} cluster cores can be achieved by coordination of cyanide ligands.  相似文献   

6.
The reaction of two equivalents of LiC6H3‐2,6‐(C6H3‐2,6‐Pri2)2 with GeCl2·dioxane, SnCl2 or PbBr2 in a diethyl ether solution resulted in the isolation of the monomeric σ‐bonded diaryl tetrylene series E{C6H3‐2,6‐(C6H3‐2,6‐Pri2)2}2 (E = Ge ( 1 ), Sn ( 2 ), or Pb( 3 )). Compounds 1 ‐ 3 are highly sterically congested blue crystalline solids, which possess V‐shaped structures and wide interligand bond angles. The solid state structures of 1 ‐ 3 were determined by single‐crystal X‐ray methods while their solution structures were investigated by UV spectroscopy and in the cases of 2 and 3 , respectively, by 119Sn and 207Pb NMR spectroscopy. The series 1 ‐ 3 constitutes the most sterically crowded examples of σ‐bonded diorgano group 14 derivatives yet isolated and, in contrast to previously reported: ER2 species, the C‐E‐C angles increase with increasing atomic number.  相似文献   

7.
The comprehensive study reported herein provides compelling evidence that anion templates are the main driving force in the formation of two novel nanoscale lanthanide hydroxide clusters, {Gd38(ClO4)6} ( 1 ) and {Gd48Cl2(NO3)} ( 2 ), characterized by single‐crystal X‐ray crystallography, infrared spectroscopy, and magnetic measurements. {Gd38(ClO4)6}, encapsulating six ClO4? ions, features a cage core composed of twelve vertex‐sharing {Gd4} tetrahedrons and one Gd???Gd pillar. When Cl? and NO3? were incorporated in the reaction instead of ClO4?, {Gd48Cl2(NO3)} is obtained with a barrel shape constituted by twelve vertex‐sharing {Gd4} tetrahedrons and six {Gd5} pyramids. What is more, the cage‐like {Gd38} can be dynamically converted into the barrel‐shaped {Gd48} upon Cl? and NO3? stimulus. To our knowledge, it is the first time that the linear M‐O‐M′ fashion and the unique μ8‐ClO4? mode have been crystallized in pure lanthanide complex, and complex 2 represents the largest gadolinium cluster. Both of the complexes display large magnetocaloric effect in units of J kg?1 K?1 and mJ cm?3 K?1 on account of the weak antiferromagnetic exchange, the high NGd/MW ratio (magnetic density), and the relatively compact crystal lattice (mass density).  相似文献   

8.
Reaction of N-heterocyclic carbene (NHC)-stabilized PGeP-type germylene Ge{o-(PiPr2)C6H4}2MeIiPr ( 1 ) (MeIiPr=1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) with Ni(cod)2 gave pincer germylene complex Ni[Ge{o-(PiPr2)C6H4}2](MeIiPr) ( 2 ), in which the Ge center of 2 is significantly pyramidalized. Theoretical calculation on 2 predicted the ambiphilicity of the germanium center, which was confirmed by reactivity studies. Thus, complex 2 reacted with both Lewis base MeIMe (MeIMe=1,3,4,5-tetramethylimidazol-2-ylidene) and Lewis acid BH3⋅SMe2 at the germanium center to afford the adducts Ni[Ge{o-(PiPr2)C6H4}2MeIMe](MeIiPr) ( 3 ) and Ni[Ge{o-(PiPr2)C6H4}2⋅BH3](MeIiPr) ( 4 ), respectively. Furthermore, the former was slowly converted to dinuclear complex Ni2[Ge{o-(PiPr2)C6H4}2]2(MeIMe)2 ( 5 ) at room temperature. Complex 5 can be regarded as a dimer of the MeIMe analog of 2 with a Ni-Ge-Ge-Ni linkage.  相似文献   

9.
Pr6C2‐Bitetrahedra in Pr6C2Cl10 and Pr6C2Cl5Br5 The compounds Pr6C2Cl10 and Pr6C2Cl5Br5 are prepared by heating stoichiometric mixtures of Pr, PrCl3, PrBr3 and C in sealed Ta capsules at 810 ? 820 °C. They form bulky transparent yellow to green and moisture sensitive crystals which have different structures: space groups C2/c, (a = 13.687(3) Å, b = 8.638(2) Å, c = 15.690(3) Å, β = 97.67(3)° for Pr6C2Cl10 and a = 13.689(1) Å, b = 10.383(1) Å, c = 14.089(1) Å, β = 106.49(1)° for Pr6C2Cl5Br5). Both crystal structures contain C‐centered Pr6C2 bitetrahedra, linked via halogen atoms above edges and corners in different ways. The site selective occupation of the halogen positions in Pr6C2Cl5Br5 is refined in a split model and analysed with the bond length‐bond strength formalism. The compound is further characterized via TEM investigations and magnetic measurements (μeff = 3.66 μB).  相似文献   

10.
The First Bromide with Trigonal-Bipyramidal [M5(C2)] Clusters: [Pr5(C2)]Br9 The bromide [Pr5(C2)]Br9 is obtained via metallothermic reduction of PrBr3 with rubidium in the presence of praseodymium and carbon in a sealed niobium container at 730°C as dark red single crystals. [Pr5(C2)]Br9 crystallizes in the monoclinic crystal system [P21/n; Z = 4; a = 1 006.9(1); b = 1 886.1(1); c = 1 045.9(1) pm; β = 108.130(1)°; Rint = 0.059; R1 = 0.038; wR2 = 0.077]. One edge in the base of the trigonal bipyramid in [Pr5(C2)]Br9 is usually long (440 pm). It is not brigded by a Bri ligand. In addition to the eight Bri, the cluster is coordinated by 12 terminal ligands (Bra). Except for the known Bra–a–a and Bri–a connections, Bri–a–a brigdes are observed for the first time for trigonal-bipyramidal clusters.  相似文献   

11.
X‐ray crystal structures are reported for Na6[RuO2{TeO4(OH)2}2]·16H2O and Na5[Ag{TeO4(OH)2}2]·16H2O which contain respectively RuVI and AgIII coordinated to chelating bidentate tellurate ([TeO4(OH)2]4−) groups. Na6[RuO2{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 6.9865(1), b = 8.7196(2), c = 11.7395(2)Å, α = 74.008(1), β = 79.954(1), γ = 88.514(1)°; R1 = 0.025. Na5[Ag{TeO4(OH)2}2]·16H2O: Space group P1¯, Z = 2, lattice dimensions at 120 K; a = 5.888(1), b = 8.932(1), c = 12.561(2)Å, α = 98.219(6), β = 97.964(9), γ = 93.238(14)°; R1 = 0.047.  相似文献   

12.
Novel silylation reactions at [Ge9] Zintl clusters starting from the chlorosilanes SiR3Cl (R = iBu, iPr, Et) and the Zintl phase K4Ge9 are reported. The formation of the tris‐silylated anions [Ge9(SiR3)3] [R = iBu ( 1a ), iPr ( 1b ), Et ( 1c )] by heterogeneous reactions in acetonitrile was monitored by ESI‐MS measurements. For R = iBu 1H, 13C and 29Si NMR experiments confirmed the exclusive formation of 1a . Subsequent reactions of 1a with CuNHCDippCl and Au(PPh3)Cl result in formation of the neutral metal complex (CuNHCDipp)[Ge9{Si(iBu)3}3]·0.5 tol ( 2 ·0.5 tol) and the metal bridged dimeric unit {Au[Ge9{Si(iBu)3}3]2} ( 3a ), isolated as a (K‐18c6)+ salt in (K‐18c6)Au[Ge9{Si(iBu)3}3]2·tol ( 3 ·tol), respectively. Finally, from a toluene/hexane solution of 1a in presence of 18‐crown‐6, crystals of the compound (K‐18c6)2[Ge9{Si(iBu)3}2]·tol ( 4 ·tol), containing the bis‐silylated cluster anion [Ge9(Si(iBu)3)2]2– ( 4a ), were obtained. The compounds 2 ·0.5 tol, 3 ·tol and 4 ·tol were characterized by single‐crystal structure determination.  相似文献   

13.
The characterization of the unstable NiII bis(silylamide) Ni{N(SiMe3)2}2 ( 1 ), its THF complex Ni{N(SiMe3)2}2(THF) ( 2 ), and the stable bis(pyridine) derivative trans‐Ni{N(SiMe3)2}2(py)2 ( 3 ), is described. Both 1 and 2 decompose at ca. 25 °C to a tetrameric NiI species, [Ni{N(SiMe3)2}]4 ( 4 ), also obtainable from LiN(SiMe3)2 and NiCl2(DME). Experimental and computational data indicate that the instability of 1 is likely due to ease of reduction of NiII to NiI and the stabilization of 4 through dispersion forces.  相似文献   

14.
Structure and magnetic properties of N‐diisopropoxyphosphorylthiobenzamide PhC(S)‐N(H)‐P(O)(OiPr)2 ( HLI ) and N‐diisopropoxyphosphoryl‐N′‐phenylthiocarbamide PhN(H)‐C(S)‐N(H)‐P(O)(OiPr)2 ( HLII ) complexes with the CoII cation of formulas [Co{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2] ( 2 ), [Co{PhC(S)‐N(H)‐P(O)(OiPr)2}2{PhC(S)‐N‐P(O)(OiPr)2}2] ( 1a ) and [Co{PhC(S)‐N‐P(O)(OiPr)2}2}(2,2′‐bipy)] ( 3 ), [Co{PhC(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 4 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(2,2′‐bipy)] ( 5 ), [Co{PhN(H)‐C(S)‐N‐P(O)(OiPr)2}2(1,10‐phen)] ( 6 ) were investigated. Paramagnetic shifts in the 1H NMR spectrum were observed for high‐spin CoII complexes with HLI,II , incorporating the S‐C‐N‐P‐O chelate moiety and two aromatic chelate ligands. Investigation of the thermal dependence of the magnetic susceptibility has shown that the extended materials 1‐2 and 6 show ferromagnetic exchange between distorted tetrahedral ( 1 , 2 ) or octahedral ( 1a , 6 ) metal atoms whereas 3 and 5 show antiferromagnetic properties. Compound 4 behaves as a spin‐canted ferromagnet, an antiferromagnetic ordering taking place below a critical temperature, Tc = 115 K. Complexes 1 and 1a were investigated by single crystal X‐ray diffraction. The cobalt(II) atom in complex 1 resides a distorted tetrahedral O2S2 environment formed by the C=S sulfur atoms and the P=O oxygen atoms of two deprotonated ligands. Complex 1a has a tetragonal‐bipyramidal structure, Co(Oax)2(Oeq)2(Seq)2, and two neutral ligand molecules are coordinated in the axial positions through the oxygen atoms of the P=O groups. The base of the bipyramid is formed by two anionic ligands in the typical 1,5‐O,S coordination mode. The ligands are in a trans configuration.  相似文献   

15.
The metallothermic reduction of praseodymium tribromide, PrBr3, with lithium metal (molar ratio 1:1) in sealed tantalum containers at 850°C yields bronze lustrous rods of Pr2Br5. The crystal structure (monoclinic, P21/m, Z = 2, a = 774.38(4), b = 415.33(3), c = 1327.06(9) pm, β = 90.816(6)°, Vm = 128.52(2) cm3 mol?1) contains seven- and eight-coordinate trivalent praseodymium in mono- and bicapped trigonal prisms. Pr2Br5 should therefore be formulated as (Pr3+)2(Br?)5(e?). It is isostructural with Pr2I5 and is believed to be identical with PrBr2,38 reported for the Pr/PrBr3 system.  相似文献   

16.
By deliberately using a metastable polyanion [(NbO2)6P2W12O56]12? ( 1 ), which was formed in situ, we have discovered the unprecedented hexameric cluster {Mn15(Nb6P2W12O62)6} ( 2 ), in which the six polyanions [Nb6P2W12O61]10? are alternately connected by four intriguing trinuclear {MnIII3} moieties and four {MnII} linkers. This discovery is the first in which the phosphoniobotungstate has been made accessible by using transition‐metal ions; furthermore, polyanion 2 represents the largest niobotungstate cluster reported to date. Analysis by means of electrospray ionization mass spectrometry (ESI‐MS ) provides insight into the self‐assembly process, and the peaks observed relate to the different charge states of the parent cluster, thus confirming the stability of 2 . In addition, magnetic‐susceptibility measurements reveal that each {MnIII3} subunit is a separate single‐molecule magnet (SMM). This discovery results from the exploration of the reverse effect of metastable polyanion 1 possessing high reactivity, thereby turning a disadvantage into an advantage. This finding could define a new synthetic strategy for the design and synthesis of magnetic polyoxometalate (POM) clusters.  相似文献   

17.
18.
Triclinic single crystals of [(C6H10)(NH3)2][Ni(H2O)4C6H2(COO)4]·4H2O have been prepared in aqueous solution at 55 °C. Space group (Nr. 2), a = 691.23(6), b = 924.84(5), c = 1082.43(7) pm, α = 74.208(6)°, β = 75.558(7)°, γ = 68.251(6)°, V = 0.60985(7) nm3, Z = 1. The Nickel(II) species, located on a crystallographic inversion centre, is coordinated in a trans‐octahedral fashion by two oxygen atoms stemming from the centrosymmetric pyromellitate anions and four from water molecules (Ni–O 205.82(12) – 208.11(13) pm). The connection between Ni2+ and [C6H2(COO)4)]4? leads to infinite chain‐like polyanions extending parallel to with {Ni(H2O)4[C6H2(COO)4]2?}n composition. [(C6H10)(NH3)2]2+‐cations are accomodated between the chains, compensating for the negative charge of the polyanions. Thermogravimetric analysis in air showed that the loss of water of crystallisation occurs in two steps between 102 and 206 °C, corresponding to the loss of 6 and 2 water molecules per formula unit, respectively. The dehydrated sample was stable between 206 and 353 °C. Further decomposition yielded nickel(II) oxide (NiO).  相似文献   

19.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

20.
Direct reaction of stoichiometric amounts of KBr, tantalum and bromine at 720 °C, followed by extraction and crystallization gives Ta6Br14 · 7H2O (1) . This compound slowly aquates into [(Ta6Br12)(H2O)6]2+, which crystallized as mixed Cs+/Br ( 2 ), Cl ( 3 ) and SO42– ( 4 ) salts. In Bu4NBr melt, 1 undergoes oxidation into (Bu4N)2[(Ta6Br12)Br6] ( 5 ). Reaction of 1 with dimethylsulfoxide also induces oxidation of the { Ta6Br12} 2+ core into { Ta6Br12} 4+, and the corresponding complex [(Ta6Br12)(dmso)2Cl4] · iPrOH · 4.8H2O ( 6 ) was isolated and structurally characterized. Molecular and crystal structures for 2 – 6 were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号