共查询到20条相似文献,搜索用时 8 毫秒
1.
Mohammed M. Kummali Gustavo A. Schwartz Angel Alegría Richard Arinero Juan Colmenero 《Journal of Polymer Science.Polymer Physics》2011,49(18):1332-1338
The effect of thermal treatment on the phase separation process of the components of a polymer blend was investigated using electrostatic force microscopy (EFM). EFM technique is an advance on conventional atomic force microscopy, which enables us to measure locally the dielectric properties of the samples under investigation providing compositional information. In this work, we studied the phase separation process of the polymer blend thin films made of polystyrene and poly(vinyl acetate) (PS/PVAc) (75/25 weight fraction). The samples were subjected to different thermal treatments. It was found that at low annealing temperature, PVAc forms many small islands within PS matrix. As the annealing temperature increases, the number of PVAc islands decreases with an increase in the size of the islands. These islands take spherical‐like shape when annealed at a temperature well above the glass transition temperatures of both the component polymers. Despite these morphological/topographical changes, EFM images evidence that there is no interdiffusion which was further confirmed by quantitatively measuring the value of the dielectric permittivity across the interphase. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1332–1338, 2011 相似文献
2.
3.
4.
《Surface and interface analysis : SIA》2004,36(3):213-219
Dynamic mode imaging and investigations on amplitude versus distance measurements were carried out on surfaces of single‐crystal; SrTiO3, Al2O3 and LaAlO3. Experiments were performed to optimize the imaging parameters for surfaces having varying elastic properties. The dependence of the amplitude–distance curve on different materials and the amplitude of oscillation was investigated. For SrTiO3, a low‐drive amplitude provided the linear region necessary for imaging. A large amplitude of oscillation, however, created dips in the amplitude–distance curves, presumably due to complications in the tip dynamics such as bifurcation, period doubling, etc. In the case of Al2O3 and LaAlO3, amplitude–distance curves were characterized by oscillations for lower tip sample separations and step‐like discontinuities in the stiff region. The magnitude of the oscillations and discontinuities was found to decrease with amplitude and eventually could be eliminated. Thus, for these samples a large amplitude of the cantilever provided the linear region required for imaging. It was observed also that two different surfaces of Al2O3 (c‐cut and r‐cut) yield totally different amplitude–distance curves consistent with their standard differences. The results indicate the complex behaviour of amplitude–distance curves, which not only vary from one sample to another but from one surface to another for a given sample. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
5.
Local surface charge dissipation studied using force spectroscopy method of atomic force microscopy
下载免费PDF全文

We propose herein a method to study local surface charge dissipation in dielectric films using force spectroscopy technique of atomic force microscopy. By using a normalization procedure and considering an analytical expression of the tip‐sample interaction force, we could estimate the characteristic time decay of the dissipation process. This approach is completely independent of the atomic force microscopy tip geometry and considerably reduces the amount of experimental data needed for the calculation compared with other techniques. The feasibility of the method was demonstrated in a freshly cleaved mica surface, in which the local charge dissipation after cleavage followed approximately a first‐order exponential law with the characteristic time decay of approximately 7–8 min at 30% relative humidity (RH) and 2–3.5 min at 48% RH. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
Minjun Yan 《Surface and interface analysis : SIA》2008,40(12):1503-1506
Bistable molecules under electric field are being investigated for the concept of quantum‐dot cellular automata (QCA). Different configurations of molecular arrays implement various logic devices and circuits. The electric field emitted from underlying metal wires, which are applied with clock signal, not only enables power gain, but also fulfills pipelining computation. It might be convenient to measure the electric field distribution directly from these metal wires. A pseudo‐quantitative method was developed to map the electric field distribution with electrostatic force microscopy. This method converts the phase signal into the electric field intensity, by which we demonstrated how to use a particular electric field distribution to drive the computation of QCA molecules. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
7.
《Surface and interface analysis : SIA》2004,36(9):1340-1343
The morphology of thin, selectively imprinted films of Nylon‐6 was investigated by scanning force microscopy. Four amino acids were used as template molecules in the spin‐cast films. Film thickness ranged from 2 µm to 500 nm, depending on the nylon and template concentration in the casting solution. The thin‐film properties, including the presence of nanometer‐ to micrometer‐sized pores, are clearly associated with the imprinting process. The larger features observed by scanning force microscopy are attributed to amino acid clustering during the casting process. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
8.
SHAUNE J. HANLEY JEAN-FRANCOIS REVOL LOUIS GODBOUT DEREK G. GRAY 《Cellulose (London, England)》1997,4(3):209-220
Atomic force microscopy (AFM), tapping mode atomic force microscopy (TM-AFM) and transmission electron microscopy (TEM) have
been used to image the cell wall, ultrathin sections of whole cells and cellulose microfibrils prepared from the green alga
Micrasterias denticulata. Measurements of the microfibril dimensions are in agreement with earlier observations carried out by electron microscopy.
Images at the molecular level of the surface of the microfibrils were obtained with AFM and show regular periodicities along
the microfibril axis that correspond to the fibre and glucose repeat distances of cellulose. Twisted regions visible at intervals
along the microfibrils dried down onto substrates were noted to be right-handed in over 100 observations by TEM, AFM and TM-AFM.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
9.
Anirban Ganguly M. De Sarkar Anil K. Bhowmick 《Journal of Polymer Science.Polymer Physics》2007,45(1):52-66
Atomic force microscopy was successfully applied for comprehensive nanoscale surface and bulk morphological characterization of thermoplastic elastomeric triblock copolymers: poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) having different block lengths and their clay based nanocomposites. Commercially available Cloisite®20A and octadecyl (C18) ammonium ion modified montmorillonite clay (OC) prepared in our laboratory by cation exchange reaction were used. The phase detected images in the tapping mode atomic force microscopy exhibited a well‐ordered phase separated morphology consisting of bright nanophasic domains corresponding to hard component and darker domains corresponding to softer rubbery ethylene‐co‐butylene (PEB) lamella for all the neat triblock copolymers. This lamellar morphology gave a domain width of 19–23 nm for styrenic nanophase and 12–15 nm for ethylene‐co‐butylene phase of SEBS having end to mid block length ratio of 30:70 and block molecular weights of 8800–41,200–8800. On increasing the ratio of block lengths of the polymer matrix and the selectivity of the solvent toward the blocks used for casting, the morphological features of the resultant films altered along with change in domain thickness. The phase images showed position and distribution of the brightest clay stacks in the dark‐bright contrast of the base matrix of the nanocomposite. Exfoliated and intercalated‐exfoliated morphology obtained in the case of Cloisite®20A and OC‐based SEBS nanocomposites, respectively, is further supported by X‐ ray diffraction and transmission electron microscopy studies. The lamellar thickness of the soft phases widened to 50–75 nm, where the layered clay silicates (40–54 nm in length and 4–17 nm in width) were embedded in the soft rubbery phases in the block copolymeric matrix of the nanocomposite. The marginally thicker width of the hard styrenic phases and slightly shrinked width of the soft rubbery lamella can be observed from the regions where no nanofiller is present. Distinct differences in bulk morphologies of the nanocomposites prepared in the melt and the solution processes were obtained with nanocomposites. The presence of clay particles was evident from the almost zero pull‐off and snap‐in force in the force‐distance analysis of SEBS based nanocomposite. This analysis also revealed stronger tip interaction resulting in highest contact and adhesive forces with the softer PEB region relative to the harder PS region. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 52–66, 2007 相似文献
10.
In situ pulsed force mode scanning force microscopy (PFM-SFM) images of phase separated solid-supported lipid bilayers are discussed with the help of computer simulations. Simultaneous imaging of material properties and topography in a liquid environment by means of PFM-SFM is severely hampered by hydrodynamic damping of the cantilever. Stiffness and adhesion images of solid-supported membranes consisting of cholesterol, sphingomyelin, and 1,2-dioleyl-phosphatidylcholine obtained in aqueous solution exhibit contrast inversion of adhesion and stiff. ness images depending on parameters such as driving frequency, amplitude, and trigger setting. Simulations using a simple harmonic oscillator model explain experimental findings and give a deeper insight into the way PFM-SFM experiments have to be performed in order to obtain interpretable results and hence pave the way for reliable material contrast imaging at high speed. 相似文献
11.
Muramatsu H Yamamoto Y Shigeno M Shirakawabe Y Inoue A Kim WS Kim SJ Chang SM Kim JM 《Analytica chimica acta》2008,611(2):233-238
We have fabricated polymer tips for atomic force microscopy in order to elucidate the effects of tip length and shape on cantilever vibration damping in liquids. The vibration damping is investigated by measuring the vibration amplitude of cantilevers as a function of tip-sample distance. The cantilever with a short tip provides a higher damping effect over long tip-sample distances. When the vibration amplitude was rescaled to show the effect of the cantilever width on oscillation damping, the vibration amplitude of cantilevers with various tip lengths was similarly obtained in a long distance range over 50 μm. This similarity is explained by an acoustic damping model in which an acoustic wave is generated by the cantilever. Finally, the results indicate a cantilever with a sufficiently long tip compared to the cantilever width can dramatically reduce the long-range damping effect in a liquid environment. 相似文献
12.
13.
《Surface and interface analysis : SIA》2003,35(4):410-412
Atomic force microscopy (AFM) has been applied to investigate the morphological and topographical surface modifications induced by radiofrequency cold plasma processing of poly(ethyleneterephthalate) textiles. Surface effects are analysed in low‐pressure air plasma for different plasma exposure times. The results show a progressive degradation of the surface with increasing roughness. The analysis suggests that modification of the surface during textile treatment may be ascribed to a plasma‐induced physical process. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
14.
Atomic force microscopy (AFM) has been used to visualize the plastic deformation mechanisms that are responsible for the yielding of semicrystalline polymers of low degree of crystallinity (<50%). Indeed, AFM, if operated in suitable conditions, is able to image both the amorphous and the crystalline phases. Polyamide 6 films have been drawn at temperatures T < 160 °C. Postmortem AFM observations show that, at yield, shear bands nucleate and propagate in the amorphous phase. They cross the crystalline lamellae and run over the whole surface of the sample. By crossing the lamellae, they form nanoblocks of uniform size. Neither the size of the nanoblocks nor the angle between the tensile axis and the shear bands can be explained in terms of crystal plasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 687–701, 2004 相似文献
15.
Tongyan Pan 《Surface and interface analysis : SIA》2013,45(6):978-984
Corrosion‐induced delamination of an epoxy coating on the AISI/SAE 1045 carbon steel was studied under a humid atmospheric condition (temperature of 25 °C, 1 standard atmospheric pressure, relative humidity of 90%) by the technique of scanning Kelvin probe force microscopy (SKPFM). Surface‐polished 1045 samples were first cold‐coated with the epoxy and then subject to the atmospheric corrosion under the specified condition. At predetermined time intervals, surface Volta potential differences of the samples were measured using the SKPFM over the dry surface of epoxy coating. The map of Volta potential differences demonstrated high contrasts among three characteristic zones: intact steel‐epoxy interface, delaminated interface, and interface with active corrosion, which was then linked to the actual corrosion potential of the steel (measured using a potentiostat with respect to a saturated calomel electrode) based on a rigorous calibration procedure. It was found that the SKPFM was able to provide direct and nondestructive detection of early active corrosion and coating delamination on steels at a submicroscopic resolution, which outperformed the conventional electrochemical techniques for the same purposes. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
16.
Uji-i H Foubert P De Schryver FC De Feyter S Gicquel E Etoc A Moucheron C Kirsch-De Mesmaeker A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(3):758-762
Topological modifications of plasmid DNA adsorbed on a variety of surfaces were investigated by using atomic force microscopy (AFM). On mica modified with 3-aminopropyltriethoxysilane (APS) or poly-L-lysine, the interaction between the plasmid DNA and the surface "freezes" the plasmid DNA conformation deposited from solution, and the AFM images resemble the projection of the three-dimensional conformation of the plasmid DNA in solution. Modified mica with low concentrations of Mg(2+) leads to a decrease in the interaction strength between plasmid DNA and the substrate, and the AFM images reflect the relaxed or equilibrium conformation of the adsorbed plasmid DNA. Under these optimized deposition conditions, topological modifications of plasmid DNA were produced under irradiation in the presence of [Ru(TAP)(3)](2+) (TAP = 1,4,5,8-tetraazaphenanthrene), which is a non-intercalating complex, and were followed as a function of illumination time. The observed structural changes correlate well with the conversion of the supercoiled covalently closed circular form (ccc form) into the open circular form (oc form), induced by a single-strand photocleavage. The AFM results obtained after fine-tuning of the plasmid DNA-substrate interaction compare well with those observed from gel electrophoresis, indicating that under the appropriate deposition conditions, AFM is a reliable technique to investigate irradiation-induced topological changes in plasmid DNA. 相似文献
17.
As many properties of polymer thin films critically depend on their thickness, a convenient and cost‐effective method for precise measurement of film thickness in a wide range is highly desirable. Here, we present a method which enables polymer film thickness, ranging from nanometer to micrometer scale, to be facilely determined by measuring the height of an artificially created film step on smooth substrates with atomic force microscopy (AFM). Three polymeric films (polystyrene, poly(methyl methacrylate) and poly(styrene–ethylene/butylene–styrene) films), spin‐coated on either mica or quartz substrate with thickness ranging from 5.7 nm to 4.4 µm, were employed to demonstrate the procedure and feasibility of our method. The proposed method is particularly suitable for thicker polymer films, thus complementing the traditional AFM ‘tip‐scratch’ method which is generally limited to polymer films of no more than 100 nm thickness. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
Martin Munz Jae‐Ho Kim Oliver Krause Debdulal Roy 《Surface and interface analysis : SIA》2011,43(11):1382-1391
Accurate knowledge of the nanoroughness of surfaces is crucial for many applications related to optics, electronics or tribology. Although atomic force microscopy (AFM) can image surfaces with a nanometre spatial resolution, the finite size of standard tips means that pores, pits or grooves with dimensions similar to or smaller than the tip apex will not be accurately imaged. Furthermore, standard tips are made of silicon or silicon nitride and are prone to wear. Mitigation may arise from the availability of AFM tips with a carbon nanotube (CNT) at their foremost end. This study compares the imaging performance of ultrasharp Si tips, CNT AFM tips prepared by a Langmuir‐Blodgett (LB) technique, and of CNT AFM tips prepared by a chemical vapour deposition (CVD) technique. The free length of the CNT AFM tips is in the range 80–200 and 600–750 nm, respectively. A polycrystalline niobium film surface is imaged that shows nanoroughness. The measurements demonstrate that CNT AFM tips allow excellent imaging if the scan parameters are adjusted very carefully. Nevertheless, in some cases distortions are found. The measured average grain diameter is 19.9 ± 3.6 nm in the case of a CNT AFM tip made by the LB technique, and 18.0 ± 3.3 nm in the case of a CNT AFM tip made by CVD. In addition to cross‐sections of topography images, also the power spectral density (PSD) is analyzed. An empirical approach for the readout of the characteristic length is suggested that involves the first derivative of the decadic logarithm of the PSD. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
D. Raghavan X. Gu T. Nguyen M. Vanlandingham 《Journal of Polymer Science.Polymer Physics》2001,39(13):1460-1470
Characterization of polymer coatings microstructure is critical to the fundamental understanding of the corrosion of coated metals. An approach for mapping the chemical heterogeneity of a polymer system using chemical modification and tapping‐mode atomic force microscopy (TMAFM) is demonstrated. This approach is based on the selective degradation of one of the phases in a multiphase polymer blend system and the ability of TMAFM to provide nanoscale lateral information about the different phases in the polymer system. Films made of a 70:30 polyethyl acrylate/polystyrene (PEA/PS) blend were exposed to a hydrolytic acidic environment and analyzed using TMAFM. Pits were observed to form in the PEA/PS blend films, and this degradation behavior was similar to that of the PEA material. Using these results, the domains in the 70:30 blend were identified as the PS‐rich regions and the matrix as the PEA‐rich region. This conclusion was confirmed by Fourier transform infrared‐attenuated total reflection analyses that revealed the hydrolysis of the PEA material. TMAFM phase imaging was also used to follow pit growth of the blend as a function of exposure time. The usefulness of the chemical modification/AFM imaging approach in understanding the degradation process of a coating film is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci B Part B: Polym Phys 39: 1460–1470, 2001 相似文献
20.
A non‐optical force sensor that allows operation both in lateral (shear) and in vertical (tapping) force detection modes has been introduced for dynamic tip–sample distance regulation in scanning near‐field optical microscopy (SNOM) of biological samples. The sensor is based on a rectangular bimorph cantilever consisting of two thin piezoceramic layers bonded to a brass centre shim. One of the piezo layers serves as the probe dither and another as the responder of the sensed forces. The sensor is driven with a home‐made Q‐control electronics so that its sensitivity and bandwidth can be adjusted. The dynamics, characteristics and design considerations of the sensor are theoretically and experimentally discussed. Driving the bimorph cantilever at its eigenfrequency with appropriate force feedback allows one to obtain a quality factor (Q‐factor) up to 103 in water, suitable for different sample softness and imaging environments. The high sensitivity of the sensor is demonstrated both by shear force and by tapping mode imaging of soft biological samples in their natural state. Near‐field optical resolution of better than 100 nm on red blood cells in water has been obtained. The experimental results suggest that this SNOM sensor would be a promising set‐up for biological applications. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献