首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of sulfonated polyimides with increasing alkyl substituents in the o‐position to diamine were synthesized from 4,4′‐methylene dianiline, 4,4′‐diamine‐3,3′‐dimethyl‐diphenylmethane, and 4,4′‐diamine‐3,5,3′,5′‐tetraethyl‐diphenylmethane using 1,4,5,8‐naphthalenetetracarboxylic dianhydride and perylenetetracarboxylic dianhydride by chemical imidization method. 4,4′‐Diaminobiphenyl 2,2′‐disulfonic acid was used as sulfonated diamine. The variation in the membrane properties with increase in substitution was analyzed. Solubility increased with substitution whereas the thermal stability decreased with increase in substitution. Ion exchange capacity and water uptake reduced with increase in substitution because of the low sulfonic acid content at a particular weight due to the increased molecular weight of the repeating unit. The conductivity of the substituted diamines was higher than the unsubstituted diamines at higher temperature regardless of low ion exchange capacity and water uptake. The increase in conductivity with increase in temperature was more rapid in polyimides than in Nafion®115. Hydrolytic stability of the polyimides with substitution is more than the unsubstituted diamines. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3621–3630, 2004  相似文献   

2.
Sulfonated polyimides with tertiary nitrogen in the polymer backbone were synthesized with 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl 2,2′‐disulfonic acid, 2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane, and diaminoacrydine hemisulfate. They were crosslinked with a series of dibromo alkanes to improve the hydrolytic stability. The crosslinked sulfonated polyimide films were characterized for their thermal stability, ion‐exchange capacity (IEC), water uptake, hydrolytic stability, and proton conductivity. All the sulfonated polyimides had good thermal stability and exhibited a three‐step degradation pattern. With an increase in the alkyl chain length of the crosslinker, IEC decreased as 1.23 > 1.16 > 1.06 > 1.01, and the water uptake decreased as 7.29 > 6.70 > 6.55 > 5.63. The order of the proton conductivity of the crosslinked sulfonated polyimides at 90 °C was as follows: polyimide crosslinked with dibromo butane (0.070) > polyimide crosslinked with dibromo hexane (0.055) > polyimide crosslinked with dibromo decane (0.054). The crosslinked polyimides showed higher hydrolytic stability than the uncrosslinked polyimides. Between the crosslinked polyimides, the hydrolytic stability decreased with an increase in the alkyl chain length of the crosslinker. The crosslinked and uncrosslinked sulfonated polyimides exhibited almost the same proton conductivities. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2370–2379, 2005  相似文献   

3.
To investigate the effect of crosslinking by a hydrophilic group on a sulfonated polyimide electrolyte membrane, sulfonated polyimide end‐capped with maleic anhydride was synthesized using 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl, 2,2′‐disulfonic acid, 2‐bis [4‐(4‐aminophenoxy)phenyl] hexafluropropane and maleic anhydride. The sulfonated polyimides end‐capped with maleic anhydride were self‐crosslinked or crosslinked with poly(ethylene glycol) diacrylate. A series of the crosslinked sulfonated polyimides having various ratios of sulfonated polyimide and poly(ethylene glycol) diacrylate were prepared and compared with uncrosslinked and self‐crosslinked sulfonated polyimides. The synthesized sulfonated polyimide films were characterized for FTIR spectrum, thermal stability, ion exchange capacity, water uptake, hydrolytic stability, morphological structure, and proton conductivity. The formation of sulfonated polyimide was confirmed in FTIR spectrum. Thermal stability was good for all the sulfonated polyimides that exhibited a three‐step degradation pattern. Ion exchange capacity was the same for both the uncrosslinked and the self‐crosslinked sulfonated polyimides (1.30 mEq/g). When the crosslinked sulfonated polyimides with poly(ethylene glycol) were compared, the ion exchange capacity was decreased as 1.27 > 1.25 > 1.23 mEq/g and water uptake was increased as 23.8 < 24.0 < 24.3% with the increase in poly(ethylene glycol) diacrylate content. All the crosslinked sulfonated polyimides with poly(ethylene glycol) diacrylate were stable for over 200 h at 80 °C in deionized water. Morphological structure and mean intermolecular distance were obtained by WAXD. Proton conductivities were measured at 30, 50, 70, and 90 °C. The proton conductivity of the crosslinked sulfonated polyimides with poly(ethylene glycol) diacrylate increased with the increase in poly(ethylene glycol) diacrylate content despite the fact that the ion exchange capacity was decreased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1455–1464, 2005  相似文献   

4.
Novel sulfonated diamines bearing aromatic pendant groups, namely, 3,5‐diamino‐3′‐sulfo‐4′‐(4‐sulfophenoxy) benzophenone (DASSPB) and 3,5‐diamino‐3′‐sulfo‐4′‐(2,4‐disulfophenoxy) benzophenone (DASDSPB), were successfully synthesized. Novel side‐chain‐type sulfonated (co)polyimides (SPIs) were synthesized from these two diamines, 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA) and nonsulfonated diamines such as 4,4′‐bis(3‐aminophenoxy) phenyl sulfone (BAPPS). Tough and transparent membranes of SPIs with ion exchange capacity of 1.5–2.9 meq g?1 were prepared. They showed good solubility and high thermal stability up to 300 °C. They showed isotropic membrane swelling in water, which was different from the main‐chain‐type and sulfoalkoxy‐based side‐chain‐type SPIs. The relative humidity (RH) and temperature dependence of proton conductivity were examined. At low RH, the novel SPI membranes showed much higher conductivity than the sulfoalkoxy‐based SPIs. They showed comparable or even higher proton conductivity than Nafion 112 in water at 60 °C (>0.10 S cm?1). The membrane of NTDA‐DASDSPB/BAPPS (1/1)‐s displayed reasonably high proton conductivities of 0.05 and 0.30 S cm?1 at 50 and 100% RH, respectively, at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2862–2872, 2006  相似文献   

5.
Three homologous sulfonated diamines bearing a bis(aminophenoxyphenyl)sulfone structure, namely, bis[4‐(4‐aminophenoxy)phenyl]sulfone‐3,3′‐disulfonic acid (pBAPPS‐3DS), bis[4‐(4‐aminophenoxy)phenyl]sulfone‐2,2′‐disulfonic acid (pBAPPS‐2DS), and bis[4‐(4‐aminophenoxy)‐2‐(3‐sulfobenzoyl)phenyl]sulfone (pBAPPS‐2DSB), were synthesized. A series of sulfonated polyimides (SPIs) were synthesized from 1,4,5,8‐naphthalene tetracarboxylic dianhydride, these sulfonated diamines, and nonsulfonated diamines, and their properties were investigated in comparison with those reported for the SPIs from another homologous diamine or bis[4‐(3‐aminophenoxy)phenyl]sulfone‐3,3′‐disulfonic acid (mBAPPS‐3DS). These SPIs were soluble in common aprotic solvents and showed reasonably high proton conductivity, except for pBAPPS‐2DS‐based SPIs, the conductivity of which was slightly lower because of the lower water uptake. The water stability of these SPIs considerably depended on the structure of the sulfonated diamines and was in the order of pBAPPS‐2DSB ≈ pBAPPS‐2DS > pBAPPS‐3DS ? mBAPPS‐3DS. Their water stability was much lower than that of the SPIs from 4,4′‐bis(4‐aminophenoxy)biphenyl‐3,3′‐disulfonic acid. The reason was discussed on the basis of the basicity of the sulfonated diamine and the solubility property of the SPIs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2797–2811, 2007  相似文献   

6.
A series of sulfonated homo‐ and random co‐polyimides (co‐SPI) based on 2,4‐diaminobenzenesulfonic acid (2,4‐DABS) and 2,5‐diaminobenzenesulfonic acid (2,5‐DABS) has been synthesized via conventional two‐step polyimidization method. 2,4‐DABS and 2,5‐DABS were used as sulfonated diamine compounds, 4,4′‐oxydianiline (ODA) and 4,4′‐diaminodiphenyl sulfone (DDS) were used as non‐sulfonated diamine compounds. Mixtures of sulfonated and non‐sulfonated diamine compounds were reacted with benzophenonetetracarboxylic dianhydride (BTDA) to obtain co‐SPI membranes. Molar ratios of sulfonated to non‐sulfonated diamine were systematically varied to produce copolymers of controlled compositions. The co‐SPIs were evaluated for thermal oxidative stability, ion exchange capacity (IEC), water uptake, proton conductivity, solubility, and hydrolytic stability. Proton conductivity and hydrolytic stability of the co‐SPIs were compared with the fully aromatic polyimide, homo‐SPIs (BTDA/2,4‐DABS and BTDA/2,5‐DABS). Regarding thermogravimetric analysis (TGA) analysis, it is concluded that desulfonation temperature in the range of 200–350°C suggests high stability of sulfonic acid groups. co‐SPIs with 40 mol% of 2,4‐DABS showed similar or higher proton conductivity than Nafion® 117 in water. Proton conductivity values of the co‐SPIs were mainly a function of IEC and water uptake. Consequently, the optimum concentration of 2,4‐DABS was found to be in the range of 30–40 mol% from the viewpoint of proton conductivity, IEC, and hydrolytic stability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Polyimide thin films were synthesized from 3,3′,4,4′‐biphenyltetracarboxylic acid dianhydride (BPDA) and four different diamines (p‐phenylene diamine, 4,4′‐oxydiphenylene diamine, 4,4′‐biphenylene diamine, and 4,4′‐sulfonyldiphenylene diamine). The nanoindentation behavior of the resulting polyimides, namely, poly(p‐phenylene biphenyltetracarboximide) (BPDA‐PDA), poly(4,4′‐biphenylene biphenyltetracarboximide) (BPDA‐BZ), poly(4,4′‐oxydiphenylene biphenyltetracarboximide) (BPDA‐ODA), and poly(4,4′‐sulfonyldiphenylene biphenyltetracarboximide) (BPDA‐DDS), were investigated. Also, the morphological properties were characterized with a prism coupler and wide‐angle X‐ray diffraction and were correlated to the nanoindentation studies. The nanoindentation behavior and hardness varied quite significantly, depending on the changes in the chemical and morphological structures. The hardness of the polyimide thin films increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐BZ < BPDA‐PDA. For all the polyimide thin films, except that of BPDA‐BZ, the hardness decreased with an increase in the load. The birefringence, a measure of the molecular in‐plane orientation, increased in the following order: BPDA‐DDS < BPDA‐ODA < BPDA‐PDA < BPDA‐BZ. The X‐ray diffraction studies revealed that the crystallinity of the polyimide thin films varied with the changes in the chemical structure. The studies showed that the indentation response with an applied load and the hardness by nanoindentation for the BPDA‐based polyimides were closely related to the morphological structure. The nanoindentation and birefringence results revealed that the mechanical properties of the polyimide thin films were dependent on the crystallinity, which arose because of the chain order along the chain axis and the molecular packing order. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 861–870, 2004  相似文献   

8.
A series of novel sulfonated polyimides (equivalent weight per sulfonic acid = 310–744 g/equiv) containing 10–70 mol % 1,5‐naphthylene moieties were synthesized as potential electrolyte materials for high‐temperature polymer electrolyte fuel cells. The polycondensation of 1,4,5,8‐naphthalene tetracarboxylic dianhydride, 4,4′‐diamino‐2,2′‐biphenyldisulfonic acid, and 1,5‐diaminonaphthalene gave the title polymer electrolytes. The polyimide electrolytes were high‐molecular‐weight (number‐average molecular weight = 36.0–350.7 × 103 and weight‐average molecular weight = 70.4–598.5 × 103) and formed flexible and tough films. The thermal properties (decomposition temperature > 260 °C, no glass‐transition temperature), stability to oxidation, and water absorption were analyzed and compared with those of perfluorosulfonic acid polymers. The polyimide containing 20 mol % 1,5‐naphthylene moieties showed higher proton conductivity (0.3 S cm?1) at 120 °C and 100% relative humidity than perfluorosulfonic acid polymers. The temperature and humidity dependence of the proton conductivity was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3901–3907, 2003  相似文献   

9.
Two new fluorinated diamine monomers, 3,3′-diamino-5,5′-bis(trifluoromethyl)biphenyl and 3,3′-diamino-6,6′-bis(trifluoromethoxy)biphenyl, as well as a known nonfluorinated analog, 3,3′-diaminobiphenyl, were synthesized. Reaction of these diamines with rigid, highly rod-like dianhydrides produced poly(amic acid)s and polyimides, which were spin coated and thermally treated to produce polyimide films for evaluation in electronics applications. It was hoped that these polyimide films would exhibit an ideal combination of low thermal expansion, reduced water absorption, and low dielectric constant but with improved elongation due to the “crankshaft” nature of the 3,3′-biphenyl unit. Unlike polyimide films from analogous 4,4′-diaminobiphenyls, however, the 3,3′-diaminobiphenyl-based polyimides did not yield low in-plane thermal expansion coefficient in spin-coated films. In some cases high elongation was achieved, but with high thermal expansion. These new diamines may nevertheless find utility in polyimides and polyaramides for membrane, fiber, and other applications. Additionally, they may be useful in modifying the properties of polymer backbones via copolymerization. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2441–2451, 1997  相似文献   

10.
Two series of polyimides I – II with methyl‐substituted triphenylamine units were prepared from the diamines, 4,4′‐diamino‐2″,4″,6″‐trimethyltriphenylamine (Me3TPA‐diamine; 1 ) and 4,4′‐diamino‐4″‐methyltriphenylamine (MeTPA‐diamine; 2 ), and two commercially available tetracarboxylic dianhydrides via a conventional two‐step chemical imidization. All the polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass transition temperatures (266–340 °C) and high char yields (higher than 49% at 800 °C in nitrogen). The polymer films showed reversible electrochemistry/electrochromism accompanied by a color change from neutral pale yellow to green oxidized form with good coloration efficiency, switching time, and stability. The CO2 permeability coefficients (PCO2) and permeability selectivity (PCO2/PCH4) for these polyimide membranes were in the range of 34.1–229.2 barrer and 21.3–28.9, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A novel sulfonated diamine, 3,3′‐disulfonic acid‐bis[4‐(3‐aminophenoxy)phenyl]sulfone (SA‐DADPS), was prepared from m‐aminophenol and disodium‐3,3′‐disulfonate‐4,4′‐dichlorodiphenylsulfone. The conditions necessary to synthesize and purify SA‐DADPS in high yields were investigated in some detail. This disulfonated aromatic diamine, containing ether and sulfone linkages, was used to prepare N‐methyl‐2‐pyrrolidinone‐soluble, six‐membered ring polyimide copolymers containing pendent sulfonic acid groups by a catalyzed one‐step high‐temperature polycondensation in m‐cresol. These materials showed much improved hydrolytic stability with respect to phthalimides. High‐molecular‐weight film‐forming statistical copolymers with controlled degrees of disulfonation were prepared through variations in the stoichiometric ratio of disulfonated diamine (SA‐DADPS) in its soluble triethylamine salt form to several unsulfonated diamines. Three unsulfonated diamines, bis[4‐(3‐aminophenoxy)phenyl] sulfone, 4,4′‐oxydianiline, and 1,3‐phenylenediamine, were used to prepare the copolymers. The characterization of the copolymers by 1H NMR, Fourier transform infrared, ion‐exchange capacity, and thermogravimetric analysis demonstrated that SA‐DADPS was quantitatively incorporated into the copolymers. Solution‐cast films of the sulfonated copolymers were prepared and afforded tough, ductile membranes with high glass‐transition temperatures. Methods were developed to acidify the triethylammonium salt membranes into their disulfonic acid form, this being necessary for proton conduction in a fuel cell. The synthesis and characterization of these materials are described in this article. Future articles will describe the performance of these copolymers as proton‐exchange membranes in hydrogen/air and direct methanol fuel cells. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 862–874, 2004  相似文献   

12.
A series of six‐membered sulfonated polyimides were synthesized using 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl 2,2′‐disulfonic acid as the sulfonated diamine, and various nonsulfonated diamine monomers having different bridging groups. These bulky bridging groups have the capacity to increase hydrolytic stability and proton conductivity. Polyimides with bulky bridging groups showed increased solubility but exhibited lower thermal stability. The ion exchange capacity and water uptake reduced with increase in the bulkiness of the bridging group. This was attributed to the increase in the molecular weight of the repeating unit and hence effectively reduced the sulfonic acid content. In low temperatures, the conductivity was lower than Nafion®115 and, with increase in temperature, the conductivity rapidly increased and exhibited better conductivity than Nafion®115. Polyimides with bulky bridging groups 4‐amino phenyl sulfone, and 2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane showed higher conductivity than other polyimides and Nafion®115 despite low ion exchange capacity. The hydrolytic stability of the polyimides with bulky bridging groups was higher than the polyimides with less bulky atoms because of the imparted flexibility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3612–3620, 2004  相似文献   

13.
A series of molecular‐weight‐controlled fluorinated aromatic polyimides were synthesized through the polycondensation of a fluorinated aromatic diamine, 1,4‐bis(4′‐amino‐2′‐trifluoromethylphenoxy)benzene, with 4,4′‐oxydiphthalic anhydride in the presence of phthalic anhydride as the molecular‐weight‐controlling and end‐capping agent. Experimental results demonstrated that the resulting polyimides could melt at temperatures of 250–300 °C to give high flowing molten fluids, which were suitable for melt molding to give strong and flexible polyimide sheets. Moreover, the aromatic polyimides also showed good solubility both in polar aprotic solvents and in common solvents. Polyimide solutions with solid concentrations higher than 25 wt % could be prepared with relatively low viscosity and were stable in storage at the ambient temperature. High‐quality polyimide films could be prepared via the casting of the polyimide solutions onto glass plates, followed by baking at a relatively low temperature. The molten behaviors and organosolubility of the molecular‐weight‐controlled aromatic polyimides depended significantly on the polymer molecular weights. Both the melt‐molded polyimide sheets and the solution‐cast polymer films exhibited outstanding combined mechanical and thermal properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1997–2006, 2006  相似文献   

14.
Novel sulfonated polyimides (SPIs) were prepared from 1,4,5,8‐naphthalenetetracarboxylic dianhydride (NTDA), 2,2′‐bis(4‐aminophenoxy)biphenyl‐5,5′‐disulfonic acid (oBAPBDS) with nonlinear configuration, and common nonsulfonated diamines. Water uptake (WU) in liquid and vapor, water stability, and proton conductivity σ of the resulting SPI membranes were investigated. They were soluble in m‐cresol and dimethylsulfoxide, and their WUs in liquid were much larger than those of the SPIs from other sulfonated diamines with linear configuration such as 4,4′‐bis(4‐aminophenoxy)biphenyl‐3,3′‐disulfonic acid (BAPBDS). NTDA‐oBAPBDS membrane was soluble in water at room temperature, whereas all the oBAPBDS‐based copolyimide membranes were insoluble in water and maintained mechanical strength after being soaked in distilled water at 80 °C for 40–1000 h. This much improved water stability was due to the enhanced solubility stability of membrane toward water. The water vapor sorption isotherms were rather similar between the SPIs with the nonlinear and linear configurations of sulfonated diamine moieties. The present SPIs with IECs of 1.8–2.6 meq/g, including NTDA‐BAPBDS, showed reasonably high proton conductivities under the highly humid conditions and roughly fell on the same σ–WU relation line. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1432–1440, 2004  相似文献   

15.
A series of sulfonated polyimides (SPIs) were synthesized from a sulfonated diamine of 4,4′‐bis(4‐aminophenoxy) biphenyl‐3,3′‐disulfonic acid (BAPBDS), common nonsulfonated diamines, and various tetracarboxylic dianhydrides including 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA), 3,4,9,10‐perylene tetracarboxylic dianhydride (PTDA), 4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (BTDA), 4,4′‐ketone dinaphthalene 1,1′,8,8′‐tetracarboxylic dianhydride (KDNTDA), and isophthatic dinaphthalene 1,1′,8,8′‐tetracarboxylic dianhydride (IPNTDA). Their membrane properties were investigated to clarify the effects of the dianhydrides. They displayed reasonably high mechanical properties, thermal stability, and proton conductivity. The dianhydrides with flexible and non‐coplanar structure (IPNTDA > KDNTDA > BTDA) led to the better solubility of the SPIs than those with rigid and coplanar one (NTDA, PTDA). The dianhydride with the smaller molecular weight led to the larger value of the number of sorbed water molecules per sulfonic acid group (λ) in membrane, that is, NTDA (λ: 17) > PTDA (15) > BTDA (14) > KDNTDA (12) > IPNTDA (10), and as a result let to the larger proton conductivity in water. All of the BAPBDS‐based SPIs showed the anisotropy in membrane swelling and in proton conductivity, of which the degree hardly depended on the dianhydride moieties. The water stability of SPI membranes against the aging in water at 130 °C for 192 h was in the order, PTDA = NTDA ≧ BTDA > KDNTDA > IPNTDA. The hydrolysis stability of polymer chain was similar between the BTDA‐ and KDNTDA‐based SPIs. These results are discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 905–915, 2010  相似文献   

16.
Fluorinated copolyimides derived from 4,4′‐oxydiphthalic anhydride (ODPA) with 4,4′‐oxydianline (ODA) and trifluoromethyl‐containing aromatic diamines have been synthesized and characterized. The trifluoromethyl‐containing diamines include 2,4‐diamino‐3′‐trifluoromethylazobenzene, 2,4‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] aniline, 3,5‐diamino‐1‐[(4′‐trifluoromethylphenoxy) phenyl] benzamide, 3,5‐diamino‐1‐[(3′‐trifluoromethyl) phenyl] benzamide, 1,4‐bis(4′‐aminophenoxy)‐2‐(3′‐trifluoromethylphenyl) benzene, 3,5‐diaminobenzenetrifluoride, 4,4′‐diamino‐4″‐(p‐trifluoromethyl phenoxy) triphenylamine, and 4‐[(4′‐trifluoromethylphenoxy) phenyl]‐2,6‐bis(4″‐aminophenyl)pyridine. Strong and flexible copolyimide films, produced by casting the polyamic acid solution followed by thermal imidization, exhibited great thermal stability and high mechanical properties. The polyimides had an ultraviolet–visible absorption cutoff at 330–340 nm and pretilt angles as high as 20° for nematic liquid crystals, making them great potential candidates for advanced liquid‐crystal display applications. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1583–1593, 2002  相似文献   

17.
A sulfonated dianhydride monomer, 6,6′‐disulfonic‐4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (SBTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (BTDA), using fuming sulfuric acid as the sulfonating reagent. A series of sulfonated homopolyimides were prepared from SBTDA and various common nonsulfonated diamines. The resulting polymer electrolytes, which contain ion conductivity sites on the deactivated positions of the aryl backbone rings, displayed high proton conductivities of 0.25–0.31 S cm?1 at 80 °C. The oxidative stability test indicated that the attachment of the ? SO3H groups onto the dianhydride units did not deteriorate the oxidative stability of the SPI membranes. The better membranes were achieved by the copolymerization of nonsulfonated diamine, SBTDA, and BTDA. Copolymer membrane synthesized from hexane‐1,6‐diamine, SBTDA, and BTDA displayed excellent water stability of more than 1000 h at 90 °C, while its proton conductivity was still at a high level (comparable to that of Nafion 117). Furthermore, the novel block copolymer ( II‐b ) displayed higher proton conductivity compared with the random one ( II‐r ) obviously, probably due to the slightly higher water uptake and better microphase separated morphology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2820–2832, 2008  相似文献   

18.
A new aromatic asymmetrical ether diamine, 5‐(4‐aminophenoxy)‐1‐naphthylamine, was synthesized through the nucleophilic displacement of 4‐chloronitrobenzene with the potassium phenolate of 5‐amino‐1‐naphthol in dimethylformamide, followed by hydrazine palladium‐catalyzed reduction. A series of novel aromatic polyimides containing asymmetrical diaryl ether segments were prepared from the diamine with various aromatic dianhydrides via a conventional two‐step thermal or chemical imidization method. The poly(amic acid) precursors had inherent viscosities of 1.21–1.99 dL/g, and all of them could be cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimides derived from less stiff dianhydrides generally displayed higher solubility. The glass‐transition temperatures of these polyimides were recorded between 307 and 336 °C by differential scanning calorimetry, and the softening temperatures of the polymer films were 299–344 °C according to thermomechanical analysis. The polyimides showed insignificant decomposition before 520 °C in air or nitrogen. For a comparative study, two series of analogous polyimides based on symmetrical diamines such as 1,5‐diaminonaphthalene and 1,5‐bis(4‐aminophenoxy)naphthalene were also prepared and characterized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 331–341, 2005  相似文献   

19.
A novel sulfonated diamine monomer, 2,2′‐bis(p‐aminophenoxy)‐1,1′‐binaphthyl‐6,6′‐disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30–80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film‐forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945–0.161 S/cm) at 20–80 °C in liquid water. The membranes exhibited methanol permeability from 9 × 10?8 to 5 × 10?7 cm2/s at 20 °C, which was much lower than that of Nafion (2 × 10?6cm2/s). The copolymers were thermally stable up to 300 °C. The sulfonated polyimide copolymers with 30–60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 222–231, 2007  相似文献   

20.
Organic-inorganic composite membranes from partially aliphatic sulfonated polyimides and heteropolyacids (HPAs) were synthesized. A series of composite membranes with varying amounts of heteropolyacid were prepared by altering the weight ratio of polyimide and HPA. The partially aliphatic sulfonated polyimides are synthesized from 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,4′-diaminobiphenyl 2,2′-disulfonic acid as the sulfonated diamine, and decamethylenediamine as the aliphatic diamine. The incorporation of HPA is confirmed by FT-IR analyses. When appropriately embedded in a hydrophilic polymer matrix, the hydrated HPAs are expected to endow the composite membrane with their high proton conductivity, while retaining the desirable mechanical properties of the polymer film. These composite membranes were evaluated for thermal stability, ion exchange capacity, water uptake and proton conductivity. Also the extraction of HPA from the polyimide membranes and their stability in water were determined. Though water uptake and IEC decreased with increase in HPA content, the proton conductivity of the composite membranes increased with increase in HPA weight content. This study shows that partially aliphatic sulfonated polyimide composite membranes with HPA can be a viable substitute for Nafion® for fuel cells which show good conductivity comparable to Nafion®117 at temperatures nearing 100 °C, keeping in mind that polyimides have good thermal stability and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号