首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfonated polymers are of interest for ion exchange resins, reaction supports, and membranes for separation, filtration, fuel cells, and electrochemical devices. Sulfonic groups have been introduced into polystyrene (PS) through exposure to sulfuric acid, and carbon nanotubes (CNTs) have been added to polymers to enhance proton conductivity without creating an electronic percolation pathway. PolyHIPEs, emulsion‐templated porous polymers with highly interconnected hierarchical open‐cell porous structures, are synthesized through polymerization in the external phases of high internal phase emulsions (HIPEs). In this article, the synthesis of PS‐based CNT‐filled polyHIPEs, their structure, sulfonation, and conductivity are described. Adding CNT dispersions to the HIPEs produced polymer nanoparticle–covered polyHIPEs from polymerization within the water‐soluble surfactant micelles in the internal aqueous phase droplets. The CNTs migrated from the HIPE's aqueous phase droplets into the HIPE's organic phase and formed interconnected bundles within the polyHIPE walls, reflecting a reduction in the surfactant's ability to disperse the CNTs. The water adsorption in the hygroscopic sulfonated polyHIPEs increased the conductivity by several orders of magnitude. The conductivity of the sulfonated polyHIPE containing CNTs was more than an order of magnitude greater than that of the sulfonated polyHIPEs with no CNTs. The CNTs act as “bridges,” enhancing the connection between existing conductive pathways. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4369–4377  相似文献   

2.
Highly porous polymers produced by polymerization of the continuous phase of a high internal phase emulsion have been developed as scaffolds for 3D culture of human pluripotent stem cells. These emulsion‐templated polymerized high internal phase emulsion (polyHIPE) materials have an interconnected network of pores that provide support for the cells, while also allowing both cell ingress and nutrient diffusion. Thiol‐acrylate polyHIPE materials were prepared by photopolymerization, which, due to a competing acrylate homopolymerization process, leads to a material with residual surface thiols. These thiols were then used as a handle to allow postpolymerization functionalization with both maleimide and a maleimide‐derivatized cyclo‐RGDfK peptide, via Michael addition under benign conditions. Functionalization was evaluated using an Ellman's colorimetric assay, to monitor the residual thiol concentration, and X‐ray photoelectron spectroscopy. Maleimide was used as a model molecule to optimize conditions prior to peptide‐functionalization. The use of triethylamine as a catalyst and a mixed ethanol‐aqueous solvent system led to optimized reaction between surface‐bound thiols and maleimide. Peptide‐functionalized materials showed improved attachment and infiltration of human pluripotent stem cells over 7 days, demonstrating their promise as a scaffold for 3D stem cell culture and expansion. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1974–1981  相似文献   

3.
Well‐defined mono‐ and bifunctional, phenanthroline‐terminated poly(ethylene glycol) and polyisobutylene capable of polymer network formation were synthesized. The starting materials mono‐ and bi‐phenanthroline‐ (phen) terminated poly(ethylene glycols) (mPEG‐phen, phen‐PEG‐phen) and polyisobutylenes (PIB‐phen, phen‐PIB‐phen) were prepared by the Williamson synthesis and characterized by means of 1H NMR and MALDI‐TOF mass spectrometry. According to UV–Vis spectrophotometry and ESI‐TOF mass spectrometry, the phenanthroline‐terminated polymers underwent quantitative complex formation with ferrous ions in solution. The aqueous solution of mPEG‐phen shows self‐assembly behavior. Important parameters, such as critical micelle concentration and hydrodynamic radius of the aggregates were also determined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2709–2715, 2010  相似文献   

4.
A pure unsaturated cyclic ester, 6,7‐dihydro‐2(3H)‐oxepinone (DHO2), was prepared by a new synthetic route. The copolymerization of DHO2 with ?‐caprolactone (?CL) was initiated by aluminum isopropoxide [Al(OiPr)3] at 0 °C as an easy way to produce unsaturated aliphatic polyesters with nonconjugated C?C double bonds in a controlled manner. The chain growth was living, as certified by the agreement between the experimental molecular weight at total monomer conversion and the value predicted from the initial monomer/initiator molar ratio. The polydispersity was reasonably low (weight‐average molecular weight/number‐average molecular weight ≤ 1.2). The homopolymerization of DHO2 was, however, not controlled because of fast intramolecular transesterification. Copolymers of DHO2 and ?CL were quantitatively oxidized with the formation of epoxides containing chains. The extent of the epoxidation allowed the thermal properties and thermal stability of the copolyesters to be modulated. The epoxidized copolyesters were successfully converted into thioaminated chains, which were then quaternized into polycations. No degradation occurred during the chemical modification. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2286–2297, 2002  相似文献   

5.
6.
PolyHIPE materials are produced by polymerizing the continuous phase of emulsions where the internal phase volume fraction is higher than 74%. Columns of flow‐through supports for immobilized scavengers and reagents were prepared by polymerizing the continuous phase of high internal phase emulsions containing 4‐vinylbenzyl chloride and divinylbenzene. Emulsions were placed in containers and polymerized in situ. Highly porous (80% pore volume) monolithic columns with chloromethyl functionalities and crosslinked with divinylbenzene (6% or 40%) were obtained and functionalized by a flow‐through method, immobilizing tris(2‐aminoethyl)amine, diethanolamine, and 4‐bromophenylboronic acid. Columns with immobilized tris(2‐aminoethyl)amine were applied for the effective removal of acid chlorides from the solution pumped through the column. Flow properties (back pressure versus flow rate) were characterized for dichloromethane, N,N‐dimethylformamide and acetonitrile. High effectiveness of columns were demonstrated by an over 90% of acid chloride removal from the solution after a single pass‐flow of the solution through the column. The morphology of the column material was characterized by scanning electron microscopy and showed no damage of the material after the flow‐through utilization. Good permeative properties of the interconnected porous structure make polyHIPE columns good candidates for supports for reagents and catalysts. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6726–6734, 2009  相似文献   

7.
Proton transfer polymerization through thiol‐epoxy “click” reaction between commercially available and hydrophilic di‐thiol and di‐epoxide monomers is carried out under ambient conditions to furnish water‐soluble polymers. The hydrophilicity of monomers permitted use of aqueous tetrahydrofuran as the reaction medium. A high polarity of this solvent system in turn allowed for using a mild catalyst such as triethylamine for a successful polymerization process. The overall simplicity of the system translated into a simple mixing of monomers and isolation of the reactive polymers in an effortless manner and on any scale required. The structure of the resulting polymers and the extent of di‐sulfide defects are studied with the help of 13C‐ and 1H‐NMR spectroscopy. Finally, reactivity of the synthesized polymers is examined through post‐polymerization modification reaction at the backbone sulfur atoms through oxidation reaction. The practicality, modularity, further functionalizability, and water solubility aspects of the described family of new poly(β‐hydroxythio‐ether)s is anticipated to accelerate investigations into their potential utility in bio‐relevant applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3381–3386  相似文献   

8.
Polymers containing thiol‐reactive maleimide groups on their side chains have been synthesized by utilization of a novel methacrylate monomer containing a masked maleimide. Diels‐Alder reaction between furan and maleimide was adapted for the protection of the reactive maleimide double bond prior to polymerization. AIBN initiated free radical polymerization was utilized for synthesis of copolymers containing masked maleimide groups. No unmasking of the maleimide group was evident under the polymerization conditions. The maleimide groups in the side chain of the polymers were unmasked into their reactive form by utilization of retro Diels‐Alder reaction. This cycloreversion was monitored by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and 1H and 13C NMR spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4545–4551, 2007  相似文献   

9.
Two synthetic routes to polymeric 1‐imino pyridinium ylides as new photoreactive polymeric architectures were investigated. In the first approach, polymerization of newly synthesized 1‐imino pyridinium ylide containing monomers yielding their polymeric analogues was achieved by free radical polymerization. Alternatively, reactive precursor polymers were synthesized and converted into the respective 1‐imino pyridinium ylide polymers by polymer analogous reactions on reactive precursor polymers. Quantitative conversion of the reactive groups was achieved with pentafluorophenyl ester containing polymers and newly synthesized photoreactive amines as well as by the reaction of poly(4‐vinylbenzoyl azide) with a photoreactive alcohol. The polymers obtained by both routes were examined regarding their photoreaction products and kinetics in solution as well as in thin polymer films. Contact angle measurements of water on the polymer films before and after irradiation showed dramatic changes in the hydrophilicity of the polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 832–844, 2010  相似文献   

10.
An amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MBC)], was synthesized in bulk by the ring‐opening polymerization of L ‐lactide with 2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate (MBC) in the presence of poly(ethylene glycol) as a macroinitiator with diethyl zinc as a catalyst. The subsequent catalytic hydrogenation of PEG‐b‐P(LA‐co‐MBC) with palladium hydroxide on activated charcoal (20%) as a catalyst was carried out to obtain the corresponding linear copolymer poly(ethyleneglycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylenecarbonate) [PEG‐b‐P(LA‐co‐MCC)] with pendant carboxyl groups. DSC analysis indicated that the glass‐transition temperature (Tg) of PEG‐b‐P(LA‐co‐MBC) decreased with increasing MBC content in the copolymer, and Tg of PEG‐b‐P(LA‐co‐MCC) was higher than that of the corresponding PEG‐b‐P(LA‐co‐MBC). The in vitro degradation rate of PEG‐b‐P(LA‐co‐MCC) in the presence of proteinase K was faster than that of PEG‐b‐P(LA‐co‐MBC), and the cytotoxicity of PEG‐b‐P(LA‐co‐MCC) to chondrocytes from human fetal arthrosis was lower than that of poly(L ‐lactide). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4771–4780, 2005  相似文献   

11.
Poly(methyl methacrylate‐ethyl acrylate‐acrylic acid) P(MMA‐EA‐AA) latices with narrow particle size distribution and “clean” particle surface were first synthesized by batch soap‐free emulsion polymerization, and the latex particles with anomalous morphology were obtained by alkali post‐treatment. Effects of treatment temperature and time, initial pH value, as well as 2‐butanone amount, on the morphology of latex particles were investigated. Results showed that anomalous structure of the dried latex particles could be easily identified using transmission electron microscopy (TEM) observation under the conditions of temperature >60°C, initial pH > 10.5 and 4.0–7.0 ml of 2‐butanone used. The higher the pH value is, the earlier the anomalous structure will occur. The volume expansion (ΔV) of the particle increased with the increase in treatment temperature and 2‐butanone amount. However, with the increase of initial pH value and treatment time, ΔV increased first and then decreased, and different maximum of ΔV values were observed based on different conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The present study investigates the challenging approach of post‐polymerization modification on polymers with a sterically demanding reaction center. Therefore, the general possibility to functionalize polymethylene moieties was investigated. Poly(benzyl 2‐ylidene‐acetate) was synthesized by polymerization of benzyl 2‐diazoacetate utilizing [(L‐prolinate)RhI(1,5‐dimethyl‐1,5‐cyclooctadiene)] as a catalyst. Subsequently, the modification of C1 polymerized poly(benzyl 2‐ylidene‐acetate) with amines was analyzed and the obtained data set was compared with experimental data derived for the C2 analog poly(benzyl acrylate). This is the first study on post‐polymerization modification utilizing densely functionalized polymethylenes as starting materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 686–691  相似文献   

13.
In this work, Fe3O4/polystyrene/poly(N‐isopropylacryl amide‐co‐methylacrylate acid) (Fe3O4/PS/P(NIPAAM‐co‐MAA)) magnetic composite latex was synthesized by the method of two stage emulsion polymerization. In this reaction system, 2,2′‐azobis(2‐methyl propionamidine) dihydrochloride (AIBA) was used as initiator to initiate the first stage reaction and second stage reaction. The Fe3O4 particles were prepared by a traditional coprecipitation method. Fe3O4 particles were surface treated by either PAA oligomer or lauric acid to form the stable ferrofluid. The first stage for the synthesis of magnetic composite latex was to synthesize PS in the presence of ferrofluid by soapless emulsion polymerization to form the Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out by the method of soapless emulsion polymerization with NIPAAM and MAA as monomers and Fe3O4/PS latex as seeds. The magnetic composite particles, Fe3O4/PS/P(NIPAAM‐co‐MAA), were thus obtained. The mechanism of the first stage reaction and second stage reaction were investigated. Moreover, the effects of PAA and lauric acid on the reaction kinetics, morphology, and particle size distribution were studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3912–3921, 2007  相似文献   

14.
Three kinds of dithienothiophene/carbazole‐based conjugated polymers ( P1–P3 ), which bear acid‐protected and benzoic acid pendants in P2 and P3 , respectively, were synthesized via Suzuki coupling reaction. Interestingly, P1 – P3 exhibited reversible electrochromism during the oxidation processes of cyclic voltammogram studies, and P3 (with H‐bonds) revealed the best electrochromic property with the most noticeable color change. According to powder X‐ray diffraction (XRD) analysis, these polymers exhibited obvious diffraction features indicating bilayered packings between polymer backbones and π‐π stacking between layers in the solid state. Compared with the XRD data of P2 (without H‐bands), H‐bonds of P3 induced a higher crystallinity in the small‐angle region (corresponding to a higher ordered bilayered packings between polymer backbones), but with a similar crystallinity in the wide angle region indicating a comparable π‐π stacking distance between layers. Moreover, based on the preliminary photovoltaic properties of PSC devices ( P1 – P3 blended individually with PCBM acceptor in the weight ratio of 1:1), P3 (with H‐bonds) possessed the highest power conversion efficiency of 0.61% (with Jsc = 2.26 mA/cm2, FF = 29.8%, and Voc = 0.9 V). In contrast to P2 (without H‐bands), the thermal stability, crystallinity, and electrochromic along with photovoltaic properties of P3 were generally enhanced due to its H‐bonded effects. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The synthesis of poly(VDF‐co‐TFMA) copolymers (where VDF and TFMA stand for vinylidene fluoride and α‐trifluoromethacrylic acid, respectively) by iodine transfer polymerization without any surfactant is presented. First, the synthesis and the control of the copolymerization of VDF and TFMA were investigated in the presence of two chain transfer agents, 1‐perfluorohexyl iodide (C6F13I) and 1,4‐diodoperfluorobutane (IC4F8I). TFMA monomer was incorporated in the copolymer in good yields. Moreover, the molecular weights of the resulting poly(VDF‐co‐TFMA) copolymers were in good agreement with the theoretical values for feed of TFMA/VDF ratios that ranged from 50/50 to 0/100 mol %, showing that TFMA does not disturb the controlled radical polymerization of VDF. The microstructures of the produced copolymers were characterized by 1H and 19F NMR to assess the amount of each comonomer, and the molecular weights and the end‐groups of the copolymers. The results on the control of the copolymerization were compared to those obtained with and without the presences of TFMA and surfactant. The addition of a low amount of TFMA improved the control of the polymerization of VDF without using any surfactant. Also, the size of particles, assessed by light scattering, was smaller than 200 nm. The addition of TFMA in low proportions, that is, 5 to 10 mol %, enabled us to stabilize the particle size and to decrease the size by one order of magnitude. The emulsifying behavior of TFMA (in low amount in the copolymer, that is, <10 mol %) was similar to those achieved when a surfactant was added. Indeed, neither sedimentation nor destabilization was observed after several days. The reactivity ratios for rTFMA and rVDF were 0 and 1.6 at 80 °C, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4710–4722, 2009  相似文献   

16.
Novel 5‐Z‐amino‐δ‐valerolactone (5‐NHZ‐VL) was synthesized with an aim to prepare degradable polyesters and copolyesters having amino pendant groups. Following a straightforward and efficient synthetic pathway, 5‐NHZ‐VL was obtained in only two steps and up to 50% yield. The monomer was fully characterized by 1H NMR, 13C NMR, ESI mass spectrometry, and HPLC. Various conventional conditions were tested for this lactone ring‐opening polymerization and led to the novel corresponding poly(5‐NHZ‐VL) (Mn = 7000 g/mol; PD = 1.2). Following this homopolymerization, 5‐NHZ‐VL was copolymerized with ε‐caprolactone to generate a family of copolyesters with an amino‐group content ranging from 10 to 80%. Finally, the polyelectrolyte poly(5‐NH3+‐VL) was recovered by removal of the protecting group under acidic conditions, and integrity of the polyester backbone was confirmed by 1H NMR. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
A series of carboxylated acrylate copolymer latexes were prepared via two different emulsion polymerization technologies with different carboxylic‐group distribution and morphologies. The effects of the emulsifier, the initiator, and the carboxylic monomers [acrylic acid (AA) or monobutyl itaconate (MBI)] on the total conversion of the monomers and the properties of acrylate latexes and films have been investigated. The distribution of carboxylic groups (?COOH) measured by conductometric titration shows that the concentration of surface –COOH (Cs) and embedded –COOH (Cb) both increase with the increase of the amount of carboxylic monomers. For the latexes containing AA, –COOH tends to distribute on the surface of latex particles and in the aqueous phase, whereas –COOH tends to concentrate inside the core of latex particles for the latexes containing MBI. Transmission electron microscopy demonstrates that the latex particles are regular with narrow size distribution and have significant differences in morphologies when different carboxylic monomers and polymerization technologies were used. The stability of latex is satisfactory through the results of common stability and zeta potential tests. Moreover, the water absorption and contact angle experiment tests also revealed that the water resistance of the latex films is good. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Tetraphenylporphyrin‐end‐functionalized polycyclohexane (H2TPP‐PCHE) and its metal complexes (MTPP‐PCHE) were synthesized as the first successful example of porphyrin‐end‐functionalized transparent and stable polymers with a well‐controlled and defined polymer chain structure. Chloromethyl‐end‐functionalized poly(1,3‐cyclohexadiene) (CM‐PCHD) was synthesized as prerequisite prepolymer by the postpolymerization reaction of poly(1,3‐cyclohexadienyl)lithium and chloro(chloromethyl)dimethylsilane. CM‐end‐functionalized PCHE (CM‐PCHE) was prepared by the complete hydrogenation of CM‐PCHD with p‐toluenesulfonyl hydrazide. H2TPP was incorporated onto the polymer chain end by the addition of 5‐(4‐hydroxyphenyl)‐10,15,20‐triphenylporphyrin to CM‐PCHE. The complexation of H2TPP‐PCHE and Zn(OAc)2 (or PtCl2) yielded a zinc (or platinum) complex of H2TPP‐PCHE. H2TPP‐PCHE and MTPP‐PCHE were readily soluble in common organic solvents, and PCHE did not inhibit the optical properties of the H2TPP, ZnTPP, and PtTPP end groups. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
A series of side‐chain‐functionalized α‐helical polypeptides, i.e., poly(γ‐4‐(3‐chloropropoxycarbonyl)benzyl‐L‐glutamate) (6) have been prepared from n‐butylamine initiated ring‐opening polymerization (ROP) of γ‐4‐(3‐chloropropoxycarbonyl)benzyl‐L‐glutamic acid‐based N‐carboxyanhydride. Polypeptides bearing oligo‐ethylene‐glycol (OEG) groups or 1‐butylimidazolium salts were prepared from 6 via copper‐mediated [2+3] alkyne‐azide 1,3‐dipolar cycloaddition or nuleophilic substitution, respectively. CD and FTIR analysis revealed that the polymers adopt α‐helical conformations both in solution and the solid state. Polymers bearing OEG (m = 3) side‐chains showed reversible LCST‐type phase transition behaviors in water while polymers bearing 1‐butylimidazolium and I? counter‐anions exhibited reversible UCST‐type transitions in water. Variable‐temperature UV‐vis analysis revealed that the phase transition temperatures (Tpts) were dependent on the main‐chain length and polymeric concentration. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2469–2480  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号