首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new polyesters was prepared from terephthaloyl (or isophthaloyl) chloride acid with various cardo bisphenols on solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.49 dL · g−1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, and o‐chlorophenol. The polyesters containing cardo groups including diphenylmethylene, tricyclo[5.2.1.02,6]decyl, tert‐butylcyclohexyl, phenylcyclohexyl, and cyclododecyl groups exhibited better solubility than bisphenol A–based polyesters. These polymers showed glass transition temperatures (Tg's) between 185 °C and 243 °C and decomposition temperatures at 10% weight loss ranging from 406 °C to 472 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4451–4456, 2000  相似文献   

2.
A new cardo diacid chloride, 1,1‐bis‐[4‐(4‐chlorocarboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane ( 4 ), was synthesized from 1,1‐bis‐[4‐(4‐carboxyphenoxy)phenyl]‐4‐tert‐butylcyclohexane in refluxing thionyl chloride. Subsequently, various new polyesters were prepared from 4 with various bisphenols by solution polycondensation in nitrobenzene using pyridine as a hydrogen chloride quencher at 150 °C. These polyesters were produced with inherent viscosities of 0.32–0.50 dL · g?1. Most of these polyesters exhibited excellent solubility in a variety of solvents such as N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. These polymers showed glass‐transition temperatures (Tg's) between 144 and 197 °C. The polymer containing the adamantane group exhibited the highest Tg value. The 10% weight loss temperatures of the polyesters, measured by thermogravimetric analysis, were found to be in the range of 426–451 °C in nitrogen. These cardo polyesters exhibited higher Tg's and better solubility than bisphenol A‐based polyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2951–2956, 2001  相似文献   

3.
A series of highly fluorinated polymers were synthesized by copolymerization of 2,3,4,5,6‐pentafluorostyrene (PFS) and fluorinated styrene derivate monomer (FSDM). Their chemical structure were confirmed by 1H NMR, 13C NMR, and 19F NMR spectra. The refractive index and cross‐linking density of the polymers can be tuned and controlled by monitoring the feed ratio of comonomers. A series of negative‐type low‐molecular‐weight fluorinated photoresists (NFPs) were prepared by composing of fluorinated polystyrene derivates (FPSDs), diphenyl iodonium salt as a photoacid generator (PAG) and solvent. The polymer films prepared from NFP by photocuring exhibited excellent chemical resistance and thermal stabilities (Td ranged from 230.5 to 258.1 °C). A clear negative pattern was obtained through direct UV exposure and chemical development. For waveguides without upper cladding, the propagation loss of the channel waveguides was measured to be 0.25 dB/cm at 1550 nm. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Polyesters PEs containing high content of fluorene units in their backbones were synthesized from 9,9‐diarene‐substituted fluorene diols ( 1 ) and fluorene‐based diacid chlorides ( 2 ) by high temperature polycondensation at 185 °C in diphenyl ether. The molecular weights of the polyesters PE1‐PE5 were in a range of Mw 25,000–165,000. The polyesters displayed their high thermostability: the glass transition temperatures (Tg) by differential scanning calorimetry analysis ranged from 109 to 217 °C, while the 10% weight loss temperatures (Td10) measured by thermogravimetric analysis were over 400 °C in nitrogen and 395 °C in air. The polyesters had good solubility in most common organic solvents such as chloroform and toluene and gave tough, transparent and flexible cast films. The transmittance of the films was over 80% in the wavelength range from 450 to 700 nm in any PEs . The PEs exhibited high refractive index values around 1.65, while they had very low degree of birefringence. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2549–2556, 2008  相似文献   

5.
We have prepared new polyesters containing quadratic, nonlinear optical (NLO) active chromophores covalently incorporated into the main chain. In these polymers, the sequence of the chromophore units along the main chain is rigorously head to tail. All the polyesters are processable, both in the melt and in solution. For one polyester, a full second‐order NLO characterization has been performed. An out‐of‐resonance d33 coefficient of 21 pm/V at 1368 nm has been measured. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2719–2725, 2007  相似文献   

6.
A series of phosphorous-containing aliphatic polyesters were synthesized by high-temperature solution condensation of 2-(6-oxido-6H-dibenz〈c,e〉〈1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene (III) with various aromatic acid chlorides in o-dichlorobenzene. All polyesters are amorphous and readily soluble in many organic solvents such as DMAc, NMP, DMSO, and o-dichlorobenzene at room temperature or upon heating. These polyesters are thermally quite stable. The glass transition temperatures of these aliphatic polyesters ranged from 126.6 to 162.2°C. The degradation temperatures (Td onset) in nitrogen ranged from 424 to 448°C, and the char yields at 700°C are 20–32%. The activation energies of degradation ranged from 160.9 to 226.0 kJ/mol. The LOIs of these polyesters ranged from 36 to 43. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3051–3061, 1998  相似文献   

7.
Various phase behavior of blends of poly(vinyl ether)s with polyesters of two types (highly crystalline and less crystalline with different main‐chains) were examined using differential scanning calorimetry (DSC) and optical microscopy (OM). Effects of varying the main‐chain polarity of the constituent polyesters on the phase behavior of the blends were analyzed. Miscibility in PVME/polyester blends was found only in polyesters with backbone CH2/CO ratio = 3.5 to 7.0). Tg‐composition relationships for blends of PVME with highly crystalline polyesters (PBA, PHS) were found to differ significantly from those for PVME blends with less‐crystalline polyesters (PTA, PEAz). Crystallinity of highly crystalline polyester constituents in blends caused significant asymmetry in the Tg‐composition relationships, and induced positive deviation of blends' Tg above linearity; on the other hand, blends of PVME with less crystalline polyesters exhibit typical Fox or Gordon‐Taylor types of relationships. The χ parameters for the miscible blends were found to range from ?0.17 to ?0.33, reflecting generally weak interactions. Phase behavior was analyzed and compared among blends of PVME with rapidly crystallizing vs. less‐crystallizing polyesters, respectively. Effects of polyesters' crystallinity and structures on phase behavior of PVME/polyester blends are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2899–2911, 2007  相似文献   

8.
Two types of novel fluorinated diimide‐diacid monomers—[2,2′‐(4,4′‐(3′‐methylbiphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (III) and [2,2′‐(4,4′‐(3′‐(trifluoromethyl)biphenyl‐2,5‐diyl)bis(oxy)bis(3‐(trifluoromethyl)‐4,1‐phenylene))bis(1,3‐dioxoisoindoline‐5‐carboxylic acid)] (IV)—were respectively designed and prepared by the condensation of diamines I and II with two molar equivalents of trimellitic anhydride. From both diimide‐diacids, two series of novel poly(amide‐imide)s (PAIs) (IIIa–IIIe and IVa–IVe) bearing different pendant groups were prepared by direct polymerization with various aromatic diamines (a–e). All the PAIs had a high glass transition temperatures (Tgs, 232–265 °C), excellent thermal stability (exhibiting only 5% weight loss at 493–542 °C under nitrogen) and good solubility in various organic solvents due to the introduction of the bulky pendant groups. The cast films of these PAIs (80–90 μm) had good optical transparency (73–81% at 450 nm, 85–88% at 550 nm and 87–89% at 800 nm) and low dielectric constants (2.65–2.98 at 1 MHz). The spin‐coated films of these PAIs presented a minimum birefringence value as low as 0.0077–0.0143 at 650 nm and low optical absorption at the near‐infrared optical communication wavelengths of 1310 and 1550 nm. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3243–3252  相似文献   

9.
To synthesize polyesters and periodic copolymers catalyzed by nonafluorobutanesulfonimide (Nf2NH), we performed ring‐opening copolymerizations of cyclic anhydrides with tetrahydrofuran (THF) at 50–120 °C. At high temperature (100–120 °C), the cyclic anhydrides, such as succinic anhydride (SAn), glutaric anhydride (GAn), phthalic anhydride (PAn), maleic anhydride (MAn), and citraconic anhydride (CAn), copolymerized with THF via ring‐opening to produce polyesters (Mn = 0.8–6.8 × 103, Mn/Mw = 2.03–3.51). Ether units were temporarily formed during this copolymerization and subsequently, the ether units were transformed into esters by chain transfer reaction, thus giving the corresponding polyester. On the other hand, at low temperature (25–50 °C), ring‐opening copolymerizations of the cyclic anhydrides with THF produced poly(ester‐ether) (Mn = 3.4–12.1 × 103, Mw/Mn = 1.44–2.10). NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed that when toluene (4 M) was used as a solvent, GAn reacted with THF (unit ratio: 1:2) to produce periodic copolymers (Mn = 5.9 × 103, Mw/Mn = 2.10). We have also performed model reactions to delineate the mechanism by which periodic copolymers containing both ester and ether units were transformed into polyesters by raising the reaction temperature to 120 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
High Tg amorphous copolyester thermoplastics were synthesized by incorporating 4,4′‐bibenzoate (4,4′BB) and 3,4′‐bibenzoate moieties into the polyester backbone via melt polycondensation. The high levels of crystallinity typically associated with 4,4′BB containing polyesters were suppressed through copolymerization of ethylene glycol, 1,4‐cyclohexane dimethanol, and neopentyl glycol (NPG) diols. NPG was shown to be highly effective in suppressing crystallization and was used to produce amorphous compositions with Tg’s as high as 129 °C. Diol ratios were determined by 1H NMR spectroscopy and molecular weights were assessed with inherent viscosity (ηinh). Thermogravimetric analysis showed single‐step weight losses in the range of 395 – 419 °C. Differential scanning calorimetry was used to determine melting points and glass transition temperatures over a wide range of copolyester compositions and identified amorphous compositions. Dynamic mechanical analysis confirmed Tg’s and was used to study β‐relaxations below the Tg. Rheological analysis revealed the effect of NPG structures on shear thinning and thermal stability. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 579–587  相似文献   

11.
A series of novel polyimides (PIs) ( 3a–d ) were prepared from 3,3′,5,5′‐tetramethyl‐4,4′‐diaminodiphenyl‐4 ″ ‐isopropyltoluene ( 1 ) with four aromatic dianhydrides via a one‐step high temperature polycondensation procedure. The obtained PIs showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents and chlorinated solvents. Their films were nearly colorless and exhibited high‐optical transparency, with the UV cutoff wavelength in the range of 328–353 nm and the transparency at 450 nm >80%. They also showed low‐dielectric constant (2.49–2.94 at 1 MHz) and low‐water absorptions (0.44–0.65%). Moreover, these PIs possessed high‐glass transition temperatures (Tg) beyond 327 °C and excellent thermal stability with 10% weight loss temperatures in the range of 530–555 °C in nitrogen atmosphere. In comparison with some fluorinated poly(ether imide)s derived from the trifluoromethyl‐substituted bis(ether amine)s, the resultant PIs 3a–d showed better solubility, lower cutoff wavelength, and higher Tg. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3309–3317, 2009  相似文献   

12.
This research aims to produce lignin‐based biodegradable polyesters with improved thermal quality. A series of aliphatic polyesters with lignin‐based aromatic side groups were synthesized by conventional melt‐polycondensation. Decent molecular weight (21–64 kg mol?1) was achieved for the polymerizations. The molecular structures and thermal and mechanical properties of the obtained polyesters were characterized. As a result, the obtained polyesters are all amorphous, and their glass‐transition temperature (Tg) depends on the size of the pendant aromatic group (31–51 °C). Furthermore, according to the TGA results, the thermal decomposition temperatures of the polyesters are all above 390 °C, which make them superior compared with commercial biodegradable polyesters like polylactic acid or polyhydroxyalkanoates. Finally, rheological characteristics and enzymatic degradation of the obtained polyesters were also measured. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2314–2323  相似文献   

13.
An aromatic sulfur‐containing diamine 4,4′‐thiobis[(p‐phenylenesulfanyl) aniline] (3SDA) was synthesized and polymerized with a sulfur‐containing dianhydride 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA) and three nonsulfur aromatic tetracarboxylic dianhydrides, respectively to afford four poly(amic acid)s (PAAs) with the inherent viscosities of 0.54–1.04 dL/g. Flexible and tough polyimide (PI) films obtained from the PAA precursors showed good thermal, mechanical, and optical properties. The glass transition temperatures (Tgs) of the PIs ranged from 179.1–227.2 °C determined by differential scanning calorimetry (DSC), and 173.8–227.3 °C by dynamic mechanical analysis (DMA), depending on the dianhydride used. The 10% weight loss temperatures were in the range of 500–536 °C, showing high intrinsic thermal‐resistant characteristics of the PI films. The PI films also showed good optical transparency above 500 nm, which agreed well with the calculated absorption spectra using the time‐dependent density functional theory. The average refractive indices (nav) measured at 632.8 nm were 1.7191–1.7482, and the in‐plane/out‐of‐plane birefringences (Δn) were 0.0068–0.0123. The high refractive indices originate from the high sulfur contents, good molecular packing, and the absence of bulky structures. The relatively small birefringence mainly results from the flexible thioether linkages structures of the diamine. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5606–5617, 2007  相似文献   

14.
Novel polyesters from 2,5‐furandicarboxylic acid or 2,5‐dimethyl‐furandicarboxylate and 2,3‐butanediol have been synthesized via bulk polycondensation catalyzed by titanium (IV) n‐butoxide, tin (IV) ethylhexanoate, or zirconium (IV) butoxide. The polymers were analyzed by size exclusion chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy (FTIR), matrix‐assisted laser ionization‐desorption time‐of‐flight mass spectrometry, electrospray ionization time‐of‐flight mass spectrometry, electrospray ionization quadruple time‐of‐flight mass spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. Fully bio‐based polyesters with number average molecular weights ranging from 2 to 7 kg/mol were obtained which can be suitable for coating applications. The analysis of their thermal properties proved that these polyesters are thermally stable up to 270–300 °C, whereas their glass transition temperature (Tg) values were found between 70 and 110 °C. Furthermore, a material was prepared with a molecular weight of 13 kg/mol, with a Tg of 113 °C. This high Tg would make this material possibly suitable for hot‐fill applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
2,3,4,5,6‐Pentafluoro and 4‐trifluoromethyl 2,3,5,6‐tetrafluoro styrenes were readily copolymerized with methyl methacrylate (MMA) by a free radical initiator. The copolymers were soluble in tetrahydrofuran and acetone. The films obtained were transparent and flexible. The glass transition temperatures (Tgs) of the copolymers were found positively deviated from the Gordon–Taylor equation. The positive deviation could be accounted for by dipole–dipole intrachain interaction between the methyl ester group of MMA and the highly fluorinated aromatic moiety, which resulted in a decrease in the segmental mobility of the polymer chains and the enhanced Tg values of the copolymers. The water absorption of PMMA was greatly decreased by copolymerization of MMA with the highly fluorinated styrenes. With as little as 10 mol % of pentafluoro styrene content in the copolymer, the water absorption was decreased to one‐third of that for pure PMMA. The fluorinated styrenes‐MMA copolymers were thermally stable up to 420 °C under air and nitrogen atmospheres. With 50 mol % of MMA in the copolymer, the copolymer was still stable up to 350 °C. Since these copolymers contain a large number of fluorine atoms, the light absorption in the region of the visible to near infrared is decreased in comparison with nonfluorinated polymers. Thus, these copolymers may be suitable for application in optical devices, such as optical fibers and waveguides. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
Three series of aromatic polyamides, polyesters, and poly(1,3,4‐oxadiazole)s containing bulky fluorene structures were prepared from 9,9‐bis(4‐carboxyphenyl) fluorene. All of the polymers were readily soluble in many organic solvents and showed useful thermal stability associated with high glass‐transition temperatures in the range of 220–366 °C. These wholly aromatic polymer films were colorless, with high optical transparency, and exhibited UV‐vis absorption bands at 266–348 nm and photoluminescence maximum bands at 368–457 nm within the purple to green region in N,N‐dimethylacetamide (DMAc) solutions. The poly(amine‐amide) Ic exhibited excellent electrochromic contrast and coloration efficiency, changing color from the colorless neutral form to green and then to the dark blue oxidized forms with good stability of electrochromic characteristics. Almost all of these wholly aromatic polymer films were colorless and showed high optical transparency. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4352–4363, 2007  相似文献   

17.
A highly refractive and transparent aromatic polyimide (PI) containing a selenophene unit has been developed. The PI was prepared by a two‐step polycondensation procedure from 2,5‐bis(4‐aminophenylenesulfanyl)selenophene (APSP) and 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), and shows high thermal stabilities, such as a relatively high‐glass transition temperature of 189 °C and 5% weight loss temperature (T5%) of 418 °C. The optical transmittance of the PI film at 450 nm is higher than 50%. The selenophene unit provides the PI with a refractive index of 1.7594, which is higher than corresponding PIs containing a thiophene or a phenyl unit because of the high polarizability per unit volume of the selenium atom. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4428–4434, 2009  相似文献   

18.
New aromatic (co)polyesters containing pendant propargyloxy groups were synthesized by phase transfer‐catalyzed interfacial polycondensation of 5‐(propargyloxy)isophthaloyl chloride (P‐IPC) and various compositions of P‐IPC and isophthaloyl chloride with bisphenol A. FTIR and NMR spectroscopic data, respectively, revealed successful incorporation of pendant propargyloxy groups into (co)polyesters and formation of (co)polyesters with desired compositions. (Co)polyesters exhibited good solubility in common organic solvents such as chloroform, dichloromethane, and tetrahydrofuran and could be cast into transparent, flexible, and tough films from chloroform solution. Inherent viscosities and number average molecular weights of (co)polyesters were in the range 0.77–1.33 dL/g and 43,600–118,000 g/mol, respectively, indicating the achievement of reasonably high‐molecular weights. The 10% weight loss temperatures of (co)polyesters were in the range 390–420 °C, demonstrating their good thermal stability. (Co)polyesters exhibited Tg in the range 146–170 °C and Tg values decreased with increase in mol % incorporation of P‐IPC. The study of non‐isothermal curing by DSC indicated thermal crosslinking of (co)polyesters via propargyloxy groups. The utility of pendant propargyloxy group was demonstrated by post‐modification of the selected copolyester with 1‐(4‐azidobutyl)pyrene, 9‐(azidomethyl)anthracene, and azido‐terminated poly(ethyleneglycol) monomethyl ether via copper(I)‐catalyzed Huisgen 1,3‐dipolar cycloaddition reaction. FTIR and 1H NMR spectra confirmed that click reaction was quantitative. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 588–597  相似文献   

19.
Long-chain, symmetrically unsaturated α,ω-dicarboxylic acid methyl esters (C18, C20, C26) were obtained by the catalytic metathetical condensation of 9-decenoic, 10-undecenoic, and 13-tetradecenoic acid methyl esters, respectively, with the homogeneous Grubbs catalyst bis(tricyclohexyl phosphine) benzylidene ruthenium dichloride dissolved in methylene chloride. The dicarboxylic acid esters were epoxidized chemoenzymatically with H2O2/methyl acetate with Novozym 435®, an immobilized lipase B from Candida antarctica. Polyesters from symmetrically unsaturated or epoxidized α,ω-dicarboxylic acid methyl esters with 1,3-propanediol or 1,4-butanediol, respectively, were achieved by enzymatic polycondensation with the same biocatalyst applied. With 1,3-propanediol as a substrate, the linear unsaturated and epoxidized polyesters had molecular weights of 1950–3300 g/mol and melting points of 47–75 °C, whereas with 1,4-butanediol as a substrate, the resulting polyesters showed higher molecular weights, 7900–11,600 g/mol, with similar melting points of 55–74 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1601–1609, 2001  相似文献   

20.
Copper(I) catalyzed azide‐alkyne 1,3‐Huisgen cycloaddition reaction afforded the synthesis of triazole‐containing polyesters and segmented block copolyesters at moderate temperatures. Triazole‐containing homopolyesters exhibited significantly increased (~40 °C) glass transition temperatures (Tg) relative to high temperature, melt synthesis of polyesters with analogous structures. Quantitative synthesis of azido‐terminated poly(propylene glycol) (PPG) allowed for the preparation of segmented polyesters, which exhibited increased solubility and mechanical ductility relative to triazole‐containing homopolyesters. Differential scanning calorimetry demonstrated a soft segment (SS) Tg near ?60 °C for the segmented polyesters, consistent with microphase separation. Tensile testing revealed Young's moduli ranging from 7 to 133 MPa as a function of hard segment (HS) content, and stress at break values approached 10 MPa for 50 wt % HS segmented click polyesters. Dynamic mechanical analysis demonstrated an increased rubbery plateau modulus with increased HS content, and the Tg's of both the SS and HS did not vary with composition, confirming microphase separation. Atomic force microscopy also indicated microphase separated and semicrystalline morphologies for the segmented click polyesters. This is the first report detailing the preparation of segmented copolyesters using click chemistry for the formation of ductile membranes with excellent thermomechanical response. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号