首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Electrograining of aluminium in hydrochloric acid is one of the most commonly used processes for manufacturing printing lithographic plates. Two of the main features to be taken into account are the final morphology of the electrograined surface and the susceptibility of the alloy to be processed or, more specifically, the speed of the processing line. Both issues determine the efficiency of the production in terms of quality and time. In this work, a widely used commercial aluminium alloy (1050) is compared with a new experimental one (1050 modified with Zn) and with a higher strength alloy (namely 1020). In order to analyse their response to a.c. graining in HCl for high‐speed lines, some techniques such as image analysis or interferometry have been used. In general, the alloys doped with Zn and Mg present a better response to litho processing in terms of graining activity and reduction of streakiness when treatment of lower time periods is applied due to their influence as pitting initiators. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In the present study, the effects of mechanical polishing on the microstructure and corrosion behaviour of AA7075 aluminium alloy are investigated. It was found that a nano‐grained, near‐surface deformed layer, up to 400 nm thickness, is developed due to significant surface shear stress during mechanically polishing. Within the near‐surface deformed layer, the alloying elements have been redistributed and the microstructure of the alloy is modified; in particular, the normal MgZn2 particles for T6 are absent. However, segregation bands, approximately 10‐nm thick, containing mainly zinc, are found at the grain boundaries within the near‐surface deformed layer. The presence of such segregation bands promoted localised corrosion along the grain boundaries within the near‐surface deformed layer due to microgalvanic action. During anodic polarisation of mechanically polished alloy in sodium chloride solution, two breakdown potentials were observed at ?750 mV and ?700 mV, respectively. The first breakdown potential is associated with an increased electrochemical activity of the near‐surface deformed layer, and the second breakdown potential is associated with typical pitting of the bulk alloy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Acid‐base properties of metal oxides and polymers can control adhesion properties between materials, electrical properties, the physical structure of the material and gas adsorption behavior. To determine the relationships between surface isoelectric point, chemical composition and aging effects, plasma‐surface treatment of amorphous silicon oxynitride (SiOxNy) substrates was explored using Ar, H2O vapor, and NH3 inductively coupled rf plasmas. Overall, the Ar plasma treatment resulted in nonpermanent changes to the surface properties, whereas the H2O and NH3 plasmas introduced permanent chemical changes to the SiOxNy surfaces. In particular, the H2O plasma treatments resulted in formation of a more ordered SiO2 surface, whereas the NH3 plasma created a nitrogen‐rich surface. The trends in isoelectric point and chemical changes upon aging for one month suggest that contact angle and composition are closely related, whereas the relationship between IEP and composition is not as directly correlated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In the present study, controlled reheating and breakdown rolling experiments have been carried out and the thickness, structure and uniformity of the resultant near‐surface deformed layer have been characterised by scanning and transmission electron microscopy. High aspect ratio rolling, coupled with an increased rolling speed and rough and worn roll surfaces results in a high degree of interaction between the work roll and work pieces. This generates a shingled surface appearance with a high population of transverse surface cracks and a relatively thick near‐surface deformed layer. In contrast, relatively low aspect ratio rolling, coupled with a reduced rolling speed and freshly ground work roll surfaces generates a relatively thin near‐surface deformed layer. The thickness of the near‐surface deformed layer varies across the alloy surface and is directly related to the shingles, the surface cracks and the distribution of coarse intermetallics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The surface composition of amorphous Finemet, Fe73Si15.8B7.2Cu1Nb3, was studied by X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The as‐received sample in the original state and after Ar+ sputter‐cleaning was analyzed at room temperature as well as after cooling to ? 155 °C. In the cooled state, the surface oxide layer composed of oxides of the alloy constituents was found to become enriched with elemental iron and depleted of elemental silicon, boron, oxygen and carbon as compared to the state at room temperature. Interaction of residual water vapor and hydrogen with the complex oxide layer occurring at low temperatures is believed to be responsible for the enhanced formation of surface hydroxides of the alloy constituents. The processes resulting in the observed redistribution of the elements on the surface of Finemet at low temperatures are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we present a study on the surface modification of polyethyleneterephthalate (PET) polymer by plasma treatment. The samples were treated by nitrogen and oxygen plasma for different time periods between 3 and 90 s. The plasma was created by a radio frequency (RF) generator. The gas pressure was fixed at 75 Pa and the discharge power was set to 200 W. The samples were treated in the glow region, where the electrons temperature was about 4 eV, the positive ions density was about 2 × 1015 m?3, and the neutral atom density was about 4 × 1021 m?3 for oxygen and 1 × 1021 m?3 for nitrogen. The changes in surface morphology were observed by using atomic force microscopy (AFM). Surface wettability was determined by water contact angle measurements while the chemical composition of the surface was analyzed using XPS. The stability of functional groups on the polymer surface treated with plasma was monitored by XPS and wettability measurements in different time intervals. The oxygen‐plasma‐treated samples showed much more pronounced changes in the surface topography compared to those treated by nitrogen plasma. The contact angle of a water drop decreased from 75° for the untreated sample to 20° for oxygen and 25° for nitrogen‐plasma‐treated samples for 3 s. It kept decreasing with treatment time for both plasmas and reached about 10° for nitrogen plasma after 1 min of plasma treatment. For oxygen plasma, however, the contact angle kept decreasing even after a minute of plasma treatment and eventually fell below a few degrees. We found that the water contact angle increased linearly with the O/C ratio or N/C ratio in the case of oxygen or nitrogen plasma, respectively. Ageing effects of the plasma‐treated surface were more pronounced in the first 3 days; however, the surface hydrophilicity was rather stable later. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Inverse gas chromatography (IGC) was used to determine the dispersive component of the free energy as well as the acid-base properties of cellulose fibre surfaces, before and after modification by corona treatment. It was found that the corona treatment increases both the dispersive contribution to surface energy and its acidic character, whereas only a slight increase in its basicity was observed. It was also found that some chemical degradation of the surface occurs at high corona currents. The extent of modification of the surface properties, as revealed by IGC, was correlated to the surface chemical composition deduced from XPS analysis as well as with the electrical conductance and the pH of the water suspensions of the cellulose fibres.  相似文献   

9.
X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) were used to study the surface composition and electronic structure of Finemet, Fe73Si15.8B7.2Cu1Nb3, in the original amorphous state and after gradual heating in vacuum to a temperature of 400 °C and cooling back to room temperature. It was found that relaxation processes occurring during heat treatment well below the crystallization onset caused the physico‐chemical state of Finemet surface to change irreversibly. In the relaxed alloy, the surface originally covered with the native air‐formed oxide was significantly enriched with elemental iron and depleted of other alloy constituents compared with the original state. Yet in the as‐quenched state, clustering of copper atoms on the Finemet surface was detected which was enhanced by heating. The thermal treatment resulted in the selective reduction of iron oxides and caused noticeable changes in the valence band structure and the Fe L3VV Auger spectrum associated with atomic redistribution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This article studies the evolution of near‐surface morphology as a function of various thermo‐mechanical treatments along the fabrication line of rolled AA5050 aluminium alloy. Ultra‐microtomy has been used to prepare cross‐sectional thin foils for transmission electron microscopy (TEM) and proper surfaces for scanning Kelvin probe force microscopy (SKPFM) analysis. A slight increase in the Volta potential difference (between the inter‐metallics and the matrix) between the as‐cast surface and the surface obtained after the first hot‐mill pass, emphasized that the changes in surface micro‐structure, which in turn affect the corrosion and electrochemical properties of the finished product, had already occurred at that stage. The Volta potential difference during the subsequent hot‐mill pass remained relatively constant. As far as the near‐surface morphology was concerned, hot‐rolling resulted in the formation of a heavily deformed surface layer. Annealing of the hot‐rolled aluminium sheet resulted in partial re‐crystallization of the surface layer. Subsequent cold‐rolling re‐introduced deformation in the near‐surface region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The effect of concentration of γ‐aminopropyltriethoxy (γ‐APS) solution on shear strength of adhesive bonding between aluminium sheet and polypropylene (PP) with addition of a certain amount of maleic anhydride‐grafted polypropylene (PP‐g‐MAH) has been investigated. It is shown that the lap shear strength is promoted obviously with pre‐treatment of aluminium sheet by γ‐APS. The maximum strength is obtained at a concentration of 3% γ‐APS solution. With further high concentration of γ‐APS, the lap shear strength decreases. The examination of the separated surfaces by X‐ray photoelectron spectroscopy (XPS) shows that (C?O)2? O? Al and C(?O)? O? Al are formed for adhesive bonding between PP with the addition of 20 wt% PP‐g‐MAH and aluminium sheet without pre‐treatment by γ‐APS, and that the area ratio of C related to oxygen on the separated aluminium side is 33.28%, which is obviously higher than 14% on the polymer side. As for adhesive bonding between PP with the addition of 20% PP‐g‐MAH and 3% γ‐APS pre‐treated aluminium sheet, C(?O)? N? C(?O) and C(?O)? NH are formed. The area ratio of C related to oxygen on the separated polymer side increases to 24.99%. It is proposed that γ‐APS pre‐treatment improves the distribution and shape of PP‐g‐MAH chains in the region adsorbed on the substrate and the region adjacent to this region. The chemical interactions at the interface are also proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Plasma polymerisation of N ‐isopropyl acrylamide (NIPAAm) presents an exciting route for the production of thermally responsive coatings on a wide variety of substrates for applications in tissue culture and microfluidics. One issue associated with the polymerisation of NIPAAm via plasma polymerisation is the limited volatility of the monomer and the subsequent requirement for monomer and reactor heating to create and maintain the vapour. It is already well established that power is critical in the balance between polymer functionality and coating stability in plasma polymers. However, little is known of how reactor and substrate temperatures may be used to influence the physico‐chemical characteristics of polymers produced from such low‐volatility monomers. In this paper, we examine the effects of a range of plasma deposition parameters on the functionality and stability of plasma‐polymerised NIPAAm surfaces. X‐ray photoelectron spectroscopy (XPS), near‐edge X‐ray absorption fine structure spectroscopy (NEXAFS), ellipsometry and contact angle goniometry have been used to examine coating chemistry, stability in aqueous environments, deposition rates and thermo‐responsive behaviour. Our results indicate that plasma polymerisation at low powers and low temperatures enhances the ability of plasma‐polymerised NIPAAm to display a wettability phase transition, but also contributes to instability of the coating to dissolution or delamination in water. Our spectroscopic measurements confirm that retention of the monomer structure is facilitated by low power and temperature deposition and reveal that conversion of the amide groups to amine and nitrile groups occurs during the polymerisation process, particularly at high discharge powers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Rolling is known to alter the surface properties of aluminium alloys and to introduce disturbed near‐surface microcrystalline layers. The near‐surfaces of mostly higher alloyed materials were investigated by various techniques, often combined with a study of their electrochemical behaviour. Cross‐sectional transmission electron microscopy (TEM), after ion milling or ultramicrotomy, indicated the presence of disturbed layers characterized by a refined grain structure, rolled‐in oxide particles and a fine distribution of intermetallics. Those rolled‐in oxide particles reduce the total reflectance of rolled Al alloys. Furthermore, various depth profiling techniques, such as AES, XPS, SIMS and qualitative glow discharge optical emission spectroscopy (GD‐OES) have been used to study the in‐depth behaviour of specific elements of rolled Al alloys. Here, the surface and near‐surface of AlMg0.5 (a commercially pure rolled Al alloy with addition of 0.5 wt.% Mg) after hot and cold rolling, and with and without additional annealing is studied with complementary analytical techniques. Focused ion beam thinning is introduced as a new method for preparing cross‐sectional TEM specimens of Al surfaces. Analytical cross‐sectional TEM is used to investigate the microstructure and composition. Measuring the total reflectance of progressively etched samples is used as an optical depth profiling method to derive the thickness of disturbed near‐surface layers. Quantitative r.f. GD‐OES depth profiling is introduced to study the in‐depth behaviour of alloying elements, as well as the incorporation of impurity elements within the disturbed layer. The GD‐OES depth profiles, total reflectance and cross‐sectional TEM analyses are correlated with SEM/energy‐dispersive x‐ray observations in GD‐OES craters. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
An effective approach is proposed to estimate liquids' contact angles on five commonly used plastics, polyethylene terephthalate, polypropylene, high‐density polyethylene, low‐density polyethylene, and polyvinyl chloride, with pillar‐like structures. A change in liquid droplets' three‐phase contact line due to surface roughness has been proposed in literatures. In this article, contact length ratio, σ, was used as a parameter corresponding to a specific dimension of the pillar‐like structure. Wettability of these rough plastics and their surface free energy were investigated by liquids with various polarities—de‐ionized water (polar), ethylene glycol (monopolar), and α‐bromonaphthalene (apolar). The effects of pillar‐like structures on liquids' contact angles and plastics' surface free energy were studied, and the results reveal that both effects are linear in the range of σ = 1.0 to 1.96. Linear regression models are hence proposed to predict liquids' contact angles, and accuracies are confirmed by less than 6% error for most plastic–liquid combinations. Plastics' surface free energy is also predicted by linear regression models, and the results agree with existing experimental data. Plastic–liquid interactions were also studied, and the results further validate predictions of plastics' surface free energy. In addition, plastics' polarity alteration due to effects of pillar‐like structure were analyzed and reported in this article. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The influences that both electron energy and density of a plasma bear on thin film formation are examined in the case of iodine‐doped polyaniline polymerization. The plasma was produced by means of 13.5‐MHz radiofrequency–generated glow discharges in low‐pressure (ca. 10−2 mbar) air between electrodes. Four representative inner regions of the reactor were selected according to the electron incidence. Given the uneven energy distribution found on the inside of this kind of reactors, variations in the polymer structure formed in the presence of iodine were found and studied by elemental analysis, thermogravimetry, infrared spectroscopy, and X‐ray diffraction. The results indicate that the electric conductivity of polyaniline by plasma is a function of the iodine content and that such content is a function of the combined conditions of both reactor and plasma. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 175–183, 2001  相似文献   

16.
Poly(hydroxybutyrate) films and inorganic glass slides were treated by cold plasma. The composition of the gas mixture of perfluorohexane and hydrogen was varied to obtain controlled surface coatings of different hydrophobicities. The analysis by weight variation, scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and contact angle measurements were used to evaluate the influence of the flow rate, composition, and the plasma power on the surface structure after the plasma deposition. High-resolution ESCA spectra were used to determine quantitatively the amount of different fluorine-containing species present in the plasma-deposited layers. Molecular structures and surface energies of deposited layers on polymer substrates were compared with those on inorganic substrates. In both cases a strong correlation was found between the surface free energy and the fluorine/carbon ratio as well as the oxygen/carbon ratio. Furthermore, samples with high carbon/fluorine ratios showed a high content of CF2 and CF3 groups. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Glass‐like and structural first‐order phase transitions are investigated in polytetrafluoroethylene (PTFE) foils and PTFE‐like films prepared by pulsed‐laser deposition (PLD) and plasma polymerization (PP). A structural comparison of the investigated polymers is performed by infrared spectroscopy and dielectric dilatometry. It is shown that dielectric dilatometry (the measurement of the susceptance vs. temperature) provides a simple and elegant means for detecting volumetric transitions in thin nonpolar polymer films. In conventional PTFE foils, the known glass‐like and structural first‐order phase transitions are identified. The structure of pulsed‐laser deposited PTFE strongly depends on the target material, ranging from highly crystalline films showing only structural phase transitions to films strongly deviating from PTFE foils, with structural characteristics comparable to plasma‐polymerized fluorocarbons. The dielectric loss of the highly crystalline PLD films compares favorably with conventional PTFE foils, making the films attractive for new applications in miniature electret devices. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2115–2125, 1999  相似文献   

18.
The in‐depth oxygen diffusion into a low density polyethylene film is performed in the post‐discharge of an atmospheric plasma torch, supplied in argon as carrier gas and with or without oxygen as reactive gas. The chemical and structural properties of the polymer surface and bulk are studied in terms of plasma parameters (treatment time, power, and reactive gas flow rate). A good correlation between XPS and Fourier transform infrared spectroscopy analyses is demonstrated. The penetration depth of oxygen into the bulk of the polymer is investigated by angle resolved‐XPS and time‐of‐flight SIMS. It is shown that, depending on the plasma conditions, oxygen could penetrate up to 20–40 nm into the low density polyethylene during the atmospheric plasma treatment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We report the characterization of Firpic (iridium(III)bis[4,6‐di‐fluorophenyl]‐pyridinato‐N,C2,]picolinate) organic thin film prepared by vacuum deposition to provide a systematic route to organic film quantification. To analyze the characteristics of thin Firpic films on a Si substrate, various techniques such as XPS, Fourier transform infra‐red (FT‐IR) spectrometer, and atomic force microscopy (AFM) are utilized. The Firpic films remain stable without surface morphological or compositional change during deposition and after exposure to X‐ray irradiation or atmospheric environment, for which qualities these films are believed to be an ideal platform as a pure organic thin film. The monotonic increases in FT‐IR and XPS intensities with film thickness are matching well with each other. In particular, from the XPS intensity analysis, the relative atomic sensitivity factors of the present system, electron attenuation length, and molecular density in the organic thin film can be evaluated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
CuSn thin films were deposited by the radio‐frequency (RF) magnetron co‐sputtering method on Si(100) with Cu and Sn metal targets with various RF powers. The thickness of the films was fixed at 200 ± 10 nm. The synthesized CuSn thin films mainly consisted of Cu20Sn6 and Cu39Sn11 phases, which was revealed by an X‐ray diffraction (XRD) study. The high‐resolution Cu 2p XPS and Cu LMM Auger electron spectra indicate that metallic Cu oxidized to Cu+ and Cu2+ as the RF power on Cu target increased. The atomic ratios of Sn0 and Sn4+ decreased, while that of Sn2+ increased with increasing RF power on the Cu target. The polar surface free energy (SFE) component has a different tendency in comparison with the total SFE and the dispersive SFE component. The dispersive SFE component was the dominating contributing factor to the total SFE compared with the polar SFE. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号