共查询到20条相似文献,搜索用时 0 毫秒
1.
Er4F2[Si2O7][SiO4]: The First Rare‐Earth Fluoride Silicate with Two Different Silicate Anions By the reaction of Er2O3 with ErF3 and SiO2 at 700 °C in sealed tantalum capsules using CsCl as flux (molar ratio 5 : 2 : 3 : 20), the compound Er4F2[Si2O7][SiO4] (triclinic, P 1; a = 648.51(5), b = 660.34(5), c = 1324.43(9) pm, α = 87.449(8), β = 85.793(8), γ = 60.816(7)°; Vm = 148.69(1) cm3/mol, Z = 2) is obtained as pale pink platelets or lath‐shaped single crystals. It consists of disilicate anions [Si2O7]6– in eclipsed conformation, ortho‐silicate anions [SiO4]4– and isolated [Er4F2]10+ units comprising two edge‐shared [Er3F] triangles. Er3+ is surrounded by 7 + 1 (Er1) or 7 (Er2–Er4) anionic neighbors, respectively, of which two are F– in the case of Er1 and Er4 but only one for Er2 and Er3. The other ligands recruit from oxygen atoms of the different oxosilicate groups. The crystal structure can be described as simple rowing up of the three building groups ([SiO4]4–, [Er4F2]10+, and [Si2O7]6–) along [001]. The necessity of a large excess of fluoride for a successful synthesis of Er4F2[Si2O7][SiO4] will be discussed. 相似文献
2.
During the reaction of cadmium sulfide with erbium and sulfur in evacuated silica ampoules pink lath‐shaped crystals of Er2S[SiO4] occur as by‐product which were characterized by X‐ray single crystal structure analysis. The title compound crystallizes orthorhombically in the space group Cmce (a = 1070.02(8), b = 1235.48(9), c = 683.64(6) pm) with eight formula units per unit cell. Besides isolated ortho‐oxosilicate units [SiO4]4?, the crystal structure contains two crystallographically independent Er3+ cations which are both eightfold coordinated by six oxygen and two sulfur atoms. The sulfide anions are surrounded by four erbium cations each in the shape of very distorted tetrahedra. These excentric [SEr4]10+ tetrahedra build up layers according to by vertex‐ and edge‐connection. They are piled parallel to (010) and separated by the isolated ortho‐oxosilicate tetrahedra. 相似文献
3.
Synthesis and Structure of RbHfF5, Rb2Zr3F12O and Rb2Hf3F12O — two Oxydefluorides with Central Trigonal‐plane [M3O] Group Colorless RbHfF5 crystallizes isotypic with (NH4)ZrF5 and TlHfF5 monoclinic, space group P21/c ‐ C2h (No. 14) with a = 776.6, b = 789.6, c = 789.8 pm, and β = 120.52°. Also colorless Rb2Zr3F12O crystallizes trigonal, space group R3¯m — D3d (No. 166), with a = 771.9 and c = 2963.0 pm, isotypic is Rb2Hf3F12O with a = 769.2 pm and c = 2986.1 pm. Both compounds are isotypic with Tl2Zr3F12O. 相似文献
4.
ErF3‐Rich Ternary Erbium Fluorides with the Heavy Alkali Metals: I. KEr3F10 and RbEr3F10 The conversion of erbium trifluoride (ErF3) with chlorides of the heavy alkali metals (ACl; A = K, Rb and Cs) at 700–800 °C in tantalum capsules sealed by arc‐welding surprisingly results in the formation of ErF3‐rich ternary alkali‐metal erbium(III) fluorides with the compositions AEr3F10 (A = K and Rb) or CsEr2F7, respectively. The first‐mentioned compounds are characterized by high coordination numbers at the alkali‐metal cation (CN(A+) = 15 and 16) as well as by a uniform surrounding of the Er3+ cation (CN = 8, square antiprism). In KEr3F10 (cubic, Fm3m; a = 1154.06(7) pm, Z = 8) eight (F1)? anions always arrange as a cube, whose six faces are each capped by an Er3+ cation. These [(F1)8Er6]10+ groups constitute a cubic closest sphere‐packing with K+ cations in all of the tetrahedral interstices. The [Er6(μ3‐F1)8]10+ units are interconnected via the remainder fluoride anions (F2) to build up a three‐dimensional framework so that the characteristic [ErF8]5? polyhedra (d(Er3+?F?) = 220 – 235 pm) emerge. In RbEr3F10 (hexagonal, P63mc; a = 818.43(5), c = 1336.54(8) pm, Z = 4) the analogous [ErF8]5? polyhedra (d(Er3+?F?) = 219 – 237 pm) initially convene to triple groups [Er3F19]10? through cis‐edge condensation, which are then further connected via F? corners to arrange as a two‐dimensional network perpendicular to the c axis. Finally, the cross‐linking of these layers is achieved by common F? vertices again, such that large cavities apt to take up the Rb+ cations are formed. A second part of these series will report on the syntheses and crystal structures of the ErF3‐poorer AEr2F7‐type representatives with A = K, Rb and Cs. 相似文献
5.
6.
Cu1.45Er0.85S2: A Copper(I) Erbium(III) Sulfide with Cation‐Deficient CaAl2Si2‐Type Structure Attempts to synthesize single‐phase CuYS2‐type copper(I) erbium(III) disulfide (CuErS2) from 1 : 1 : 2‐molar mixtures of the elements (Cu, Er and S) after seven days at 900 °C in sealed evacuated silica tubes failed with equimolar amounts of CsCl working as flux and reagent. In these cases, quaternary CsCu3Er2S5 (orthorhombic, Cmcm; a = 394.82(4), b = 1410.9(1), c = 1667.2(2) pm, Z = 4) and ternary Cu1.45Er0.85S2 (trigonal, P3m1; a = 389.51(4), c = 627.14(6) pm, Z = 1) become the unexpected by‐products. Both emerge even as yellow single crystals (lath‐shaped fibres and platelets, respectively, with triangular cross‐section) and both crystal structures contain condensed [CuS4] and [ErS6] units as dominating building blocks. The ternary sulfide Cu1.45Er0.85S2 exhibits CdI2‐analogous layers {[(Er3+)(S2–)6/3]–} of edge‐shared [ErS6] octahedra (d(Er–S) = 272 pm, 6 × ) which are piled up parallel (001) and interconnected by interstitial Cu+ cations in tetrahedral S2– coordination (d(Cu–S) = 236 pm, 1 × ; 240 pm, 3 × ). The latter thereby form anionic layers {([(Cu+)(S2–)4/4]–)2} as well, consisting of [CuS4] tetrahedra which share three cis‐oriented edges. When the S2– anions arrange hexagonally closest‐packed and the corresponding layers are symbolized with capital Roman letters, the Er3+ cations (small Roman) and the Cu+ cations (small Greek letters) reside layerwise alternatingly within half of the octahedral (Er3+) and tetrahedral (Cu+) voids according to … AcB αβ AcB αβ A … . Since both kinds of cations occupy only a certain percentage (Cu+: 72.6%, Er3+: 85.1%) of their regular positions, the crystal structure of Cu1.45Er0.85S2 can be addressed as a double cation‐deficient CaAl2Si2‐type arrangement according to (Er0.85□0.15)(Cu1.45□0.55)S2. The partial occupation could be established by both released site occupation factors in the course of the crystal structure refinement and electron beam X‐ray microanalysis (EDX). 相似文献
7.
During the reaction of Na2[WO4] with YF3 purposed to yield fluoride‐derivatized yttrium oxotungstates(VI), colourless platelet‐shaped single crystals of Na3F[WO4] emerged as main product. The title compound crystallizes orthorhombically in the space group Pnma (a = 559.59(5), b = 751.02(7), c = 1285.98(9) pm) with four formula units per unit cell. Besides isolated ortho‐oxotungstate units [WO4]2? (d(W–O) = 176–178 pm) the crystal structure contains two crystallographically independent Na+ cations which are both octahedrally coordinated by four oxygen atoms and two fluoride anions. The F? anions are surrounded by six sodium cations (d(F–Na) = 224–242 pm) also in an octahedral fashion. These octahedra built up chains along [100] by sharing trans‐oriented faces according to , which are stacked according to a hexagonal closest rod‐packing. The cationic strands are surrounded, interconnected and charge‐balanced by isolated [WO4]2? tetrahedra with almost ideal shape and every O2? ligand is terminally coordinated by three Na+ cations. 相似文献
8.
LaCl(BO2)2 and Er2Cl2[B2O5]: Two Chloride Oxoborates of Trivalent Lanthanides Er2Cl2[B2O5] is obtained as single crystals by the reaction of ErCl3, Er2O3 and B2O3 with an excess of ErCl3 as flux in evacuated silica tubes after two weeks at 850 °C. The compound crystallizes as long, pale pink needles and appears to be air‐ and water‐resistant. Single‐crystalline LaCl(BO2)2 emerges from the reaction of La2O3, LaCl3, and B2O3 with an excess of B2O3 as flux in evacuated silica tubes after four weeks at 900 °C. LaCl(BO2)2 crystallizes as thin, colourless, air‐ and water‐resistant needles which tend to severe twinning due to their fibrous habit. The crystal structure of Er2Cl2[B2O5] (orthorhombic, Pbam; a = 1489.65(9), b = 1004.80(6), c = 524.86(3) pm; Z = 4) contains two crystallographically different erbium cations. (Er1)3+ resides in pentagonal‐bipyramidal coordination of seven anions while (Er2)3+ is surrounded by only six anions with the shape of an octahedron. The planar oxodiborate units [B2O5]4— consisting of two vertex‐shared [BO3]3— triangles are isolated according to {([BOO]2)4—}. LaCl(BO2)2 crystallizes isostructurally with PrCl(BO2)2 in the triclinic space group P1¯ (a = 423.52(4), b = 662.16(7), c = 819.33(8) pm; α = 82.081(8), β = 89.238(9), γ = 72.109(7)°; Z = 2). The characteristic unit consists of endless chains built up by corner‐linked [BO3]3— triangles. These quasi‐planar zigzag chains of the composition {[(B1)OO(B2)OO]2—} (≡ {[BO2]—} run parallel [100]. The La3+ cations exhibit coordination numbers of ten and are coordinated by three Cl— and seven O2— anions. 相似文献
9.
Powder material of ?‐Fe2O3 was obtained by thermal decomposition of the clay mineral nontronite and subsequent isolation of the ferric oxide by leaching the silicate phases. Additionally, crystals of ?‐Fe2O3 were grown as precipitates by internal oxidation of a Pd96Fe4 alloy. Analysis of the precipitate crystals by electron diffraction yields an orthorhombic crystal system and space group Pna21 ab initio. X‐ray diffraction data of the powder containing small amounts of Al substituting Fe were refined by the Rietveld method. The refinement yields lattice parameters a = 507.15 pm, b = 873.59 pm and c = 941.78 pm, and atom positions. ?‐Fe2O3 is isostructural with κ‐Al2O3, AlFeO3, and GaFeO3 having an anion stacking sequence /ABAC/, and 1/4 of the cations in tetrahedral co‐ordination. Some strongly distorted FeO6 octahedrons with one large Fe‐O distance, which may be considered as a 5+1 co‐ordination, appear to be characteristic for ?‐Fe2O3. The structure shows elements known from silicates and oxyhydroxides of iron, respectively. 相似文献
10.
11.
K3Er7S12 and Rb3Er7S12: Two Ternary Erbium(III) Sulfides with Channel Structures The isotypic ternary erbium(III) sulfides K3Er7S12 (a = 1185.38(9), b = 2461.5(2), c = 393.59(3) pm) and Rb3Er7S12 (a = 1203.51(9), b = 2483.0(2), c = 394.85(3) pm; both orthorhombic, Pnnm, Z = 2) are obtained by reacting erbium metal and sulfur with an excess of alkali chloride (KCl or RbCl, respectively) serving as flux and reagent within seven days at 900 °C. The rod—shaped, yellow, transparent single crystals distinguish themselves in their crystal structure by a framework of corner— and edge—linked [ErS6] octahedra (d(Er3+—S2—) = 265—285 pm), in which the alkali metal cations (K+ and Rb+, respectively; CN = 6 and 7 + 1) are inserted into channels running along [001]. Under consideration of the ionic radius quotients ri(A+)/ri(Ch2—) (A = K—Cs, Ch = S—Te) the existence range of this Cs3Y7Se12—type of structure is discussed. 相似文献
12.
The new quinary fluoride‐rich rubidium scandium oxosilicate Rb3Sc2F5Si4O10 was obtained from mixtures of RbF, ScF3, Sc2O3 and SiO2 in sealed platinum ampoules after seventeen days at 700 °C. The colourless compound crystallises orthorhombically in space group Pnma with a = 962.13(5), b = 825.28(4), c = 1838.76(9) pm and Z = 4. For the oxosilicate partial structure, [SiO4]4– tetrahedra are connected in (001) by vertex‐sharing to form corrugated unbranched vierer single layers ${2}\atop{{\infty}}$ {[Si4O10]4–} (d(Si–O) = 158–165 pm, ∠(O–Si–O) = 103–114°, ∠(Si–O–Si) = 125–145°) containing six‐membered rings. Similar oxosilicate layers with 63‐net topology are well‐known for the mineral group of micas or in sanbornite Ba2Si4O10. Regarding other systems, identical tetrahedral layers can be found in the synthetic borophosphate Mg(H2O)2[B2P2O8(OH)2] · H2O. The Sc3+ cations are coordinated octahedrally by four F– and two O2– anions. These cis‐[ScF4O2]5– octahedra (d(Sc–F) = 200–208 pm, d(Sc–O) = 202–205 pm) share one equatorial and two apical F– anions with others to build up slightly corrugated ${1}\atop{{\infty}}$ {[Sc2F${t}\atop{2/1}$ F${v}\atop{6/2}$ O${t}\atop{4/1}$ ]7–} double chains along [010]. These are linked with the oxosilicate layers via two oxygen vertices to construct a three‐dimensional framework with cavities apt to host the three crystallographically independent Rb+ cations with coordination numbers of eleven, twelve and thirteen. 相似文献
13.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Three New Glutarates, [Pr2(Glu)3(H2O)4] · 10.5H2O, [Pr(Glu)(H2O)2]Cl, and [Er(Glu)(GluH)(H2O)2] The new rare‐earth dicarboxylates [Pr2(Glu)3(H2O)4] · 10.5H2O ( 1 ), [Pr(Glu)(H2O)2]Cl ( 2 ) and [Er(Glu)(GluH)(H2O)2] ( 3 ) were obtained from the reactions of glutaric acid with PrCl3·6H2O and Er(OH)3, respectively. The crystal structures were determined by single‐crystal X‐ray diffraction. [Pr2(Glu)3(H2O)4] · 10,5H2O crystallizes in the orthorhombic space group Pnma (no. 62) with a = 871.7(4), b = 3105.0(9), c = 1308.3(9) pm and Z = 4. The crystals of [Pr(Glu)(H2O)2]Cl are monoclinic (I2/a; no. 15) with a = 786.2(1), b = 1527.6(2) c = 801.2(1) pm, β = 99.78(1)° and Z = 4. [Er(Glu)(GluH)(H2O)2] crystallizes in the monoclinic space group P21/a (no. 14) with lattice parameters of a = 882.4(1), b = 1375.3(2), c = 1267.4(2) pm, β = 107.13(1)° and Z = 4. The rare‐earth cations have the coordination numbers 10 ( 1 ), 8 + 1 ( 2 ) and 9 ( 3 ). The individual polyhedra are connected to chains and further to sheets in 1 and 2 and to double chains in 3 . Only in the water‐rich compound 1 there are channels that contain crystal water molecules. It, therefore, has a considerably lower density than 2 and 3 . 相似文献
14.
Klaus Müller‐Buschbaum 《无机化学与普通化学杂志》2002,628(8):1761-1764
Er2(CO3)2(C2O4)(H2O)2 — Synthesis, Crystal Structure and the Thermal Decomposition of a Carbonate‐Oxalate‐Hydrate of Erbium The hydrothermal reaction of an equimolar ratio of Er2O3 with the aminoacid L‐cysteine in evacuated glass ampoules in H2O at 130 °C gave transparent, pink crystals of the formula Er2(CO3)2(C2O4)(H2O)2. It crystallises in the monoclinic space group Cm (Z = 2, a = 777.3(2) pm, b = 1492.0(3) pm, c = 473.09(8) pm, b = 90.12(9)°). The thermal decomposition of Er2(CO3)2(C2O4)(H2O)2 was investigated. 相似文献
15.
A New Rare‐Earth Metal(III) Fluoride Oxoselenate(IV): YF[SeO3] Just two representatives of the rare‐earth metal(III) fluoride oxoselenates(IV) with the formula type MF[SeO3] (M = La and Lu) exist so far, whereas for the intermediate lanthanoids only M3F[SeO3]4‐type compounds (M = Gd and Dy) were accessible. Because of the similar radius of Y3+ to the radii of the heavier lanthanoid cations, a missing link within the MF[SeO3] series could be synthesized now with the example of yttrium(III) fluoride oxoselenate(IV). Contrary to LuF[SeO3] with its triclinic structure, YF[SeO3] crystallizes monoclinically in space group P21/c (no. 14, a = 657.65(7), b = 689.71(7), c = 717.28(7) pm, β = 99.036(5)° and Z = 4). A single Y3+ cation occupying the general site 4e is surrounded by six oxide and two fluoride anions forming [YO6F2]11? polyhedra (d(Y–O) = 228–243 plus 263 pm, d(Y–F) = 219–220 pm). These are linked via common O···O edges to chains running along [010] and adjacent chains get tied to each other by sharing common O3···O3 and O3···F edges which results in sheets parallel to (100). The Se4+ cations connect these sheets as ψ1‐tetrahedral [SeO3]2? anions (d(Se–O) = 168–174 pm) for charge balance via all oxygen atoms. Despite the different coordination numbers of seven and eight for the rare‐earth metal(III) cations the structures of LuF[SeO3] and YF[SeO3] appear quite similar. The chains containing pentagonal bipyramids [LuO5F2]9? are connected to layers running parallel to the (100) plane again. In fact it is only necessary to shorten the partial structure of the straight chains along [001] to achieve the angular chains in YF[SeO3]. As a result of this shortening one oxide anion at a time moves into the coordination sphere of a neighboring Y3+ cation and therefore adds up the coordination number for Y3+ to eight. For the synthesis of YF[SeO3] yttrium sesquioxide (Y2O3), yttrium trifluoride (YF3) and selenium dioxide (SeO2) in a molar ratio of 1 : 1 : 3 with CsBr as fluxing agent were reacted within five days at 750 °C in evacuated graphitized silica ampoules. 相似文献
16.
Almut Haberer Reinhard Kaindl Jürgen Konzett Robert Glaum Hubert Huppertz Prof. Dr. 《无机化学与普通化学杂志》2010,636(7):1326-1332
Er5(BO3)2F9 was synthesised under conditions of 3 GPa and 800 °C in a Walker‐type multianvil apparatus. The crystal structure was determined on the basis of single‐crystal X‐ray diffraction data, collected at room temperature. Er5(BO3)2F9 is isotypic to the recently synthesised Yb5(BO3)2F9 and crystallises in C2/c with the lattice parameters a = 2031.2(4) pm, b = 609.5(2) pm, c = 824.6(2) pm, and β = 100.29(3)°. The physical properties of RE5(BO3)2F9 (RE = Er, Yb) including high temperature behaviour and single crystal IR‐ / Raman spectroscopy were investigated. 相似文献
17.
Mathias S. Wickleder 《无机化学与普通化学杂志》1999,625(2):302-308
LiLa2F3(SO4)2 and LiEr2F3(SO4)2: Fluoride‐Sulfates of the Rare‐Earth Elements with Lithium The reaction of LiF with the anhydrous sulfates M2(SO4)3 (M = La, Er) in sealed gold ampoules yields single crystals of the pseudo quaternary compounds LiLa2F3(SO4)2 and LiEr2F3(SO4)2. According to X‐ray single crystal investigations, LiLa2F3(SO4)2 crystallizes with the monoclinic (I2/a, Z = 4, a = 828.3(2), b = 694.7(1), c = 1420.9(3) pm, β = 95.30(2)°, Rall = 0.0214) and LiEr2F3(SO4)2 with the orthorhombic crystal system (Pbcn, a = 1479.1(2), b = 633.6(1), c = 813.7(1) pm, Rall = 0.0229). A common feature of both structures is a dimeric unit of metal atoms connected via three fluoride ions. This leads to relatively short metal‐metal distances (La3+–La3+: 389 pm, Er3+–Er3+: 355 pm). In LiLa2F3(SO4)2, Li+ is surrounded by four oxygen atoms of four sulfate groups and one fluoride ion in form of a trigonal bipyramid, in LiEr2F3(SO4)2 two further fluoride ligands are attached. 相似文献
18.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds. 相似文献
19.
Two Fluoride Borates of Gadolinium: Gd2F3[BO3] and Gd3F3[BO3]2 By flux‐supported solid‐state reaction of Gd2O3 and GdF3 with B2O3 (flux: CsCl, molar ratio: 1 : 1 : 1 : 6, sealed tantalum capsule, 700 °C, 7 d) the new gadolinium fluoride borate Gd2F3[BO3] (monoclinic, P21/c; a = 1637.2(1), b = 624.78(4), c = 838.04(6) pm, β = 93.341(8)°; Vm = 64.418(6) cm3/mol, Z = 8) was obtained as colourless, prismatic, face‐rich single crystals. The four crystallographically different Gd3+ cations (CN = 9) are all capped square‐antiprismatically surrounded by fluoride and oxide anions, in which the latter represent always components of isolated trigonal planar [BO3]3— anions. The six crystallographically independent F— anions all reside in more or less planar coordination of three Gd3+ cations. Thus the constitution of Gd2F3[BO3] can be described as a sequence of alternating layers each of the composition Gd[BO3] and GdF3 parallel (100), respectively. The crystal structures of Gd2F3[BO3] and the shortly published Gd3F3[BO3]2 (monoclinic, C2/c; a = 1253.4(1), b = 623.7(1), c = 836.0(1) pm, β = 97.404(6)°; Vm = 97.571(9) cm3/mol, Z = 4) are compared with each other. Due to the structural analogies between these two gadolinium fluoride borates, a disorder model of the boron atoms frequently found for Gd2F3[BO3] is able to be transferred to Gd3F3[BO3]2 as well. 相似文献
20.
Structure and Magnetism of Fluorides Cs2MCu3F10 (M = Mg, Mn, Co, Ni), Variants of the CsCu2F5 Type X‐ray structure determinations of single crystals showed that compounds Cs2MCu3F10 crystallize with Z = 2 in space group P21/n (No.14) (M = Mn) of the CsCu2F5 type resp. in its supergroup I2/m (No.12) (M = Mg, Co, Ni). Cs2MgCu3F10: a = 714.9(1), b = 736.8(1), c = 940.4(1) pm, b = 96.29(1)°, (Mg‐F: 199.2 pm); Cs2MnCu3F10: a = 725.1(1), b = 742.7(1), c = 951.0(2) pm, b = 97.28(3)°, (Mn‐F: 209.1 pm); Cs2CoCu3F10: a = 717.8(3), b = 739.1(2), c = 939.4(4) pm, b = 97.49(2)°, (Co‐F: 203.1 pm); Cs2NiCu3F10: a = 716.3(1), b = 737.7(1), c = 938.2(2) pm, b = 97.09(1)°, (Ni‐F: 201.0 pm). As determined directly for the Mg compound and generally concluded from the average distances M‐F noted, M substitution concerns mainly the octahedrally coordinated position of the CsCu2F5 structure, the distortion of which is very much reduced thereby. Within the remaining [CuF4] and [CuF5] coordinations, in contrast to CsCu2F5, one F ligand is disordered, in case of the Mn compound the pyramidally coordinated Cu atom, too. The magnetic properties are complex and point to frustration and spin glass effects. Only at the diamagnetically substituted variants with M = Mg, Zn no Néel point appears, which is reached at 27, 23, 36 and 55 K for M = Mn, Co, Ni and Cu, resp. At lower temperatures ferri‐ resp. weak ferromagnetism and hysteresis is observed. 相似文献