首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring myo‐inositol was developed into a highly rigid diol by converting its 3,4‐ and 1,6‐vicinal diols in trans configuration into the corresponding butane‐2,3‐diacetals. The resulting diol bearing 6‐6‐6 fused ring system, in which conformational change is strictly suppressed, was combined with diisocyanates to perform polyadditions. The resulting polyurethanes were analyzed by differential scanning calorimetry, and it was found that their glass transition temperatures were much higher than those of the previously reported myo‐inositol‐derived polyurethanes, which were synthesized from a myo‐inositol‐derived diol bearing 5‐6‐5 fused ring system. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3798–3803  相似文献   

2.
A bisketal of myo‐inositol was used as a diol‐type monomer for synthesis of polyurethanes. The monomer was obtained by treatment of myo‐inositol with 1,1‐dimethoxycyclohexane in the presence of p‐toluenesulfonic acid as a catalyst. The ketalization resulted in the formation of a 5‐6‐5‐fused ring system, which endowed the diol‐type monomer with high rigidity. The diol readily reacted with diisocyanate to give the corresponding polyurethane, which exhibited excellent heat resistance due to the rigid 5‐6‐5 system in the main chain. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3956–3963  相似文献   

3.
Linear polyurethanes based on sugar monomers having D ‐gluco, galacto, and D ‐manno configurations and their secondary hydroxyl groups protected as bicyclic acetals, have been prepared by polyaddition reaction of these diol monomers to hexamethylene diisocyanate ( HMDI ) and 4,4′‐methylene‐bis(phenyl isocyanate) ( MDI ). The new polyurethanes seem to be amorphous materials, except that obtained from 2,3:4,5‐di‐O‐methylene‐galactitol and HMDI. Weight‐average molecular weights, determined by GPC, were in the range 16,000–115,200. TGA analyses indicated that the thermal stability of these bicyclic polyurethanes is comparable to those based on the isosorbide; both the onset and the maximum rate decomposition temperatures increased significantly with respect to the polyurethanes based on acyclic sugar monomers. The presence of the acetalized alditol units in the polyurethanes also increased the Tgs as compared with their acyclic analogs. Deacetalization of the polyurethanes containing di‐O‐isopropylidene‐D ‐mannitol units yielded the polyhydroxylated polymers in good yields, without apparent degradation of the polymer chain. These hydroxylated polymers showed an enhanced hydrophilicity and degradability and lower Tgs and thermal stability than their parent acetalized polyurethanes. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
Two orthoester derivatives 1 and 2 that are easily accessible from naturally occurring myo‐inositol were exploited as new triol‐ and diol‐type monomers bearing a rigid adamantane‐like structure to polyaddition with diisocyanates that gave the corresponding networked and linear polyurethanes. DSC analysis of the networked polyurethanes revealed their high glass transition temperatures ranging from 155 to 248 °C, suggesting the contribution of the rigidity of the adamantane‐like structure introduced at the nodes of the networked polyurethanes 6. Besides, the polyaddition of 2 with diisocyanates gave the corresponding linear polyurethanes 4, of which glass transition temperatures were high, ranging from 105 to 177 °C, presumably by virtue of the rigidity of the adamantane‐like structure introduced into the main chains. Tgs of the networked polyurethanes 6 were higher than those of the linear polyurethanes 4. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3498–3505  相似文献   

5.
A polyaddition system consisted of a bifunctional Nn‐propyl benzoxazine and 2‐methylresorcinol ( MR ) that proceeds at ambient temperature has been developed. In this system, the aromatic ring of MR acted as a bifunctional monomer, reacting with a two equivalent amount of benzoxazine moieties via their ring‐opening reaction. The polyaddition gave the corresponding linear polymer bearing phenolic moieties bridged by Mannich‐type linkage in the main chain. The linear polymer had a high glass transition temperature, which was comparable to that of the linear polybenzoxazine synthesized by the ring‐opening polymerization of a monofunctional Nn‐propyl benzoxazine. The employment of a bifunctional N‐allyl benzoxazine in the polyaddition system resulted in the formation of the corresponding polymer with allyl pendants, which exhibited improved heat resistance due to its thermally induced crosslinking reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3867–3872  相似文献   

6.
A new monomer, 4‐methyl‐9‐p‐tolyl‐9,10‐dihydrochromeno[8,7‐e][1,3]oxazin‐2(8H)‐one, possessing both benzoxazine and coumarin rings in its structure was synthesized by the reaction of 4‐methyl‐7‐hydroxycoumarin, paraformaldehyde, and p‐toluidine in methanol at 40 °C and characterized with spectral analysis. Upon photolysis around 300 nm, this monomer underwent dimerization via the [2πs+2πs] cycloaddition reaction. Photodimerization reactions were investigated with UV and 1H NMR spectroscopy measurements. The thermal ring‐opening reaction of the benzoxazine ring was demonstrated with differential scanning calorimetry measurements. The thermal behavior of the cured product was also investigated with thermogravimetric analysis. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1670–1676, 2007  相似文献   

7.
Starting from 3,5‐diamino benzoic acid, 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzyl ether, an AB2‐type blocked isocyanate monomer with flexible ether group, and 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzoate, an AB2‐type blocked isocyanate monomer with ester group, were synthesized for the first time. Using the same starting compound, 3,5‐bis{(benzoxycarbonyl)imino}benzylalcohol, an AB2‐type blocked isocyanate monomer, was synthesized through a highly efficient short‐cut route. Step‐growth polymerization of these monomers at individually optimized experimental conditions results in the formation of hyperbranched polyurethanes with and without ether and ester groups. Copolymerizations of these monomers with functionally similar AB monomers were also carried out. The molecular weights of the polymers were determined using GPC and the values (Mw) were found to vary from 1.5 × 104 to 1.2 × 106. While hyperbranched polyurethanes having no ether or ester group were found to be thermally stable up to 217 °C, hyperbranched poly(ether–urethane)s and poly(ester–urethane)s were found to be thermally stable up to 245 and 300 °C, respectively. Glass transition temperature (Tg) of polyurethane was reduced significantly when introducing ether groups into the polymer chain, whereas Tg was not observed even up to 250 °C in the case of poly(ester–urethane). Hyperbranched polyurethanes derived from all the three different AB2 monomers were soluble in highly polar solvents and the copolymers showed improved solubility. Polyethylene glycol monomethyl ether of molecular weight 550 and decanol were used as end‐capping groups, which were seen to affect the thermal, solution, and solubility properties of polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3877–3893, 2007  相似文献   

8.
A novel melt transurethane polycondensation route for polyurethanes under solvent‐free and nonisocyanate condition was developed for soluble and thermally stable aliphatic or aromatic polyurethanes. The new transurethane process was investigated for A + B, A‐A + B, and A‐A + B‐B (A‐urethane and B‐hydroxyl) ‐type condensation reactions, and also monomers bearing primary and secondary urethane or hydroxyl functionalities. The transurethane process was confirmed by 1H and 13C NMR, and molecular weight of the polymers were obtained as Mn = 10–15 × 103 and Mw = 15–45 × 103 g/mol. The mechanistic aspects of the melt transurethane process and role of the catalyst were investigated using model reactions, 1H NMR, and MALDI‐TOF‐MS. The model reactions indicated the occurrence of 97% reaction in the presence of catalyst, whereas its absence gave only less than 2% of the product. The polymer samples were subjected for end‐group analysis using MALDI‐TOF‐MS, which confirms the Ti‐catalyst mediated nonisocyanate pathway in the melt transurethane process. Almost all the polyurethanes were stable up to 280 °C, and the Tg of the polyurethanes can be easily fine‐tuned from ?30 to 120 °C by using appropriate diols in the melt transurethane process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2445–2458, 2008  相似文献   

9.
The introduction of pendant, reactive groups into polyurethane macromolecules is a challenging problem. A variant of the nondegradative modification of polyurethanes with epoxy groups attached to the urethane sites is proposed. Two types of commercial elastomeric segmented polyurethanes, represented by a poly(ether urethane) and a poly(urethane urea), were functionalized by base‐induced N‐glycidylation of the urethane hard segments with an excess of epibromohydrin in dimethylacetamide solutions at low temperatures. This resulted in the modification of polymers with 0.30–0.44 mmol/g of pendant epoxy groups. Lithium or potassium tert‐butoxides were used as bases to initiate the reaction. A nonpolymeric urethane model (ethyl Np‐tolylcarbamoate) was used to verify the course of glycidylation. One of the polymers was subjected to epoxy ring opening with 1‐propanethiol, demonstrating the versatility of pendant glycidyl groups as auxiliary groups for further bulk modifications of polyurethanes. These functionalized polyurethanes are useful for the further covalent attachment of suitable moieties (stabilizing or biocompatibility‐enhancing agents). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4378–4385, 2002  相似文献   

10.
The cationic ring‐opening polymerization of a five‐membered thiourethane [3‐benzyl‐1,3‐oxazolidine‐2‐thione (BOT)] with boron trifluoride etherate afforded the corresponding polythiourethane with a narrow molecular weight distribution in an excellent yield. The molecular weight of the polymers could be controlled by the feed ratio of the monomer to the initiator. A kinetic study of the polymerization revealed that the polymerization rate of BOT (1.3 × 10?2 L mol?1 min?1) was two times larger than that of the six‐membered thiourethane [3‐benzyltetrahydro‐1,3‐oxazolidine‐2‐thione (BTOT); 6.8 × 10?3 L mol?1 min?1], and the monomer conversion obeyed the first‐order kinetic equation. These observations, along with the successful results in the two‐stage polymerization, supported the idea that this polymerization proceeded in a controlled manner. Block copolymerizations of BOT with BTOT were also carried out to afford the corresponding di‐ and triblock copolymers with narrow molecular weight distributions. The order of the 5% weight loss temperatures was as follows: poly(3‐benzyltetrahydro‐1,3‐oxazolidine‐2‐thione) [poly(BTOT)] > poly(BTOT54b‐BOT46) > poly(3‐benzyl‐1,3‐oxazolidine‐2‐thione) [poly(BOT)]. This indicated that an increase in the BTOT unit content raised the decomposition temperature. The order of the refractive indices was poly(BOT) > poly(BTOT54b‐BOT46) > poly(BTOT54b‐BOT46b‐BTOT50) > poly(BTOT); this was in accord with the order of the sulfur content in the polymer chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4795–4803, 2006  相似文献   

11.
1,3‐benzoxazine 1 , bearing 4‐pyridyl moiety on the nitrogen atom, was synthesized from p‐cresol, 4‐aminopyridine, and paraformaldehyde. The efficient synthesis was achieved by adding acetic acid to suppress the strong basicity caused by the presence of 4‐aminopyridine derivatives. Upon heating 1 at 180 °C, it underwent the thermally induced ring‐opening polymerization. The resulting polymer was composed of two types of repeating unit, i.e., (1) Mannich‐type one (‐phenol‐CH2‐NR‐CH2‐) that can be expected from the general ring‐opening polymerization of conventional benzoxazines and (2) a typical phenolic resin‐type one (‐phenol‐CH2‐phenol‐) induced by release of 4‐aminopyridine and paraformaldehyde (unit B). Another structural feature of the polymer was that it possessed a benzoxazine moiety at the chain end. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 410–416  相似文献   

12.
A polybenzoxazine bearing allyl group in the side chain was synthesized by the ring‐opening polymerization of N‐allyl‐benzoxazine and was crosslinked by the two different processes, (1) thermally induced oligomerization of the allyl side chains and (2) radical addition of dithiol (thiol‐ene reaction) to the allyl side chains. The former process was promoted by adding 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy)hexane as a radical source, leading to the improved yield of the networked polymer isolated as acetone‐insoluble fraction. The thiol‐ene reaction with using 1,6‐hexanedithiol was also an efficient method for crosslinking the polybenzoxazine. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
A route from naturally occurring myo‐inositol to hydroxyl‐bearing polyurethanes has been developed. The diol prepared from the bis‐acetalization of myo‐inositol with 1,1‐dimethoxycyclohexane was reacted with a rigid diisocyanate, 1,3‐bis(isocyanatomethyl)cyclohexane to afford the corresponding polyurethane, of which glass transition temperature (Tg) was quite high as 192 °C. The polyurethane contains side chains inherited from the acetal moieties of the diol monomer and was treated with trifluoroacetic acid to hydrolyze the acetal moieties and afford the target polyurethane functionalized with hydroxyl groups. The presence of many hydroxyl groups in the side chains, which can form hydrogen bonds with each other, resulted in a high Tg, 186 °C. In addition, the hydroxyl groups were reacted with isocyanates to achieve further side‐chain modifications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1358–1364  相似文献   

14.
A new s‐triazine ring containing aromatic diisocyanate bearing a pendent alkyne group, namely, 2,4‐bis(4‐isocyanatophenoxy)?6‐(prop‐2‐yn‐1‐yloxy)?1,3,5‐triazine was synthesized and reacted with various diols viz., 1,10‐decanediol, tetraethylene glycol and polyethylene glycols in the presence of dibutyltin dilaurate as the catalyst to obtain a series of linear polyurethanes. The selected polyurethanes possessing pendent alkyne groups were postmodified with chemically diverse azides viz., 1‐(azidomethyl)benzene, 1‐(azidomethyl)pyrene, and methoxy end‐caped poly(ethylene glycol) azide via copper‐catalysed azide‐alkyne Huisgen 1,3‐dipolar cycloaddition. FTIR and 1H NMR spectra indicated quantitative click reaction. UV–vis and fluorescence spectroscopic analysis confirmed complete incorporation of pyrenyl groups indicating the formation of fluorescence active polyurethane by postmodification with 1‐(azidomethyl)pyrene. TG analysis of polyurethanes indicated two stage weight loss and their thermal stability, as judged by T 10 values, was governed by weight percent of urethane linkages. The water contact angle measurements revealed improved wettability with increased content of PEG either in the backbone of polyurethanes or as grafted chains. DLS and TEM studies confirmed that certain polyurethanes possessing PEG segments displayed self‐assembly in aqueous solution, which was further supported by pyrene encapsulation studies using UV–vis spectroscopy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1008–1020  相似文献   

15.
Novel fully renewable AA‐BB type nonisocyanate polyurethanes (NIPUs) were synthesized using the transurethanization approach. Dicarbamate monomers were prepared by the reaction of a diamine with an excess of dimethylcarbonate (DMC), in presence of 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD) as catalyst. Then, the dicarbamate was reacted with a diol to afford the polymer, in presence of TBD or K2CO3 as catalyst. Several renewable diamines and diols were tested. The two steps were conducted under neat conditions. The obtained materials exhibited Tg values varying from ?38 to 42 ° C, Tm values varying from 42 to 204 °C , and thermal stabilities above 200 ° C. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1351–1359  相似文献   

16.
A novel biodegradable aliphatic poly(L ‐lactide‐co‐carbonate) bearing pendant acetylene groups was successfully prepared by ring‐opening copolymerization of L ‐lactide (LA) with 5‐methyl‐5‐propargyloxycarbonyl‐1,3‐dioxan‐2‐one (PC) in the presence of benzyl alcohol as initiator with ZnEt2 as catalyst in bulk at 100 °C and subsequently used for grafting 2‐azidoethyl β‐D ‐glucopyranoside and 2‐azidoethyl β‐lactoside by the typical “click reaction,” that is Cu(I)‐catalyzed cycloaddition of azide and alkyne. The density of acetylene groups in the copolymer can be tailored by the molar ratio of PC to LA during the copolymerization. The aliphatic copolymers grafted with sugars showed low cytotoxicity to L929 cells, improved hydrophilic properties and specific recognition and binding ability with lectins, that is Concanavalin A (Con A) and Ricinus communis agglutinin (RCA). Therefore, this kind of sugar‐grafted copolymer could be a good candidate in variety of biomedical applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3204 –3217, 2007  相似文献   

17.
A new hybrid amphiphilic system between a polyacrylic acid (PAA) synthetic segment, and a hydrophobic β‐sheet forming peptide segment, poly(L ‐valine) (PLVAL) was synthesized using a combination of Atom Transfer Radical Polymerization, Click Chemistry, and Nickel catalyzed ring opening of L ‐valine N‐carboxyanhydride. This is the first reported use of Click Chemistry as an intermediary step for the ω‐amino functionalization of polymers to obtain macroinitiators that are free from deactivating or interfering molecules to be used in subsequent Ni‐catalyzed ring opening reaction. The efficiency of the end‐group functionalization in the macroinitiator is about 90%. Three different PAA‐b‐PLVAL hybrid copolymers with molecular weight range of 8000–15,000 and Mw/Mn <1.3 had been prepared by varying the monomer to macroinitiator ratio. In addition, the highest achievable molecular weight in the copolymerization was found to be limited by the solubility of the growing chains. This combined synthetic approach can potentially be extended for the synthesis of a multitude of other peptide hybrid systems, and hence will be of interest in the preparation of peptide hybrid systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2646–2656, 2007  相似文献   

18.
Reduction of chiral 2-(2-furyl)-3,4-dimethyl-5-phenyloxazo-lidines-1,3 by H2/Raney nickel proceeds simultaneously as hydrogenation of the furan ring and opening of the oxazolidine ring on C2-O bond. Diastere-oselectivity in the first reaction was established as ca 40% and 80% depending on the configuration of the oxazolidine 1 and 2.  相似文献   

19.
A phenol/aniline type monofunctional benzoxazine monomer, PH‐a , is synthesized and highly purified to study the intrinsic thermal ring‐opening polymerization of benzoxazines without the influence of any impurity. The successful synthesis of the monomer and its corresponding chemical structure are confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. Purity of the compound is evaluated through differential scanning calorimetry (DSC) as well as elemental analysis (EA). Moreover, the thermal behavior of benzoxazine monomer toward polymerization is also studied by DSC, indicating that the highly purified benzoxazine monomer actually polymerize upon heating. The results present evidence of an intrinsic tendency for 1,3‐benzoxazines to undergo thermally induced ring‐opening polymerization upon heating only without any impurity participating during the reaction. This reveals that polybenzoxazines can be obtained by both the traditional thermally accelerated (or activated) polymerization, where impurities or purposefully added initiators are involved in the reaction; or, by the classic thermal polymerization, where only heat is enough to initiate the reaction. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3434–3445  相似文献   

20.
Hydroxy‐terminated telechelic poly(vinyl ether)s with pendant oxyethylene chains were synthesized by the reaction of the CH3CH(OCOCH3)? O[CH2]4O? CH(OCOCH3)CH3/Et1.5AlCl1.5/THF‐based bifunctional living cationic polymers of 2‐methoxyethyl vinyl ether (MOVE), 2‐ethoxyethyl vinyl ether (EOVE), and 2‐(2‐methoxyethoxy)ethyl vinyl ether (MOEOVE) with water and the subsequent reduction of the aldehyde polymer terminals with NaBH4. The obtained poly(vinyl ether) polyols were reacted with an equimolar amount of toluene diisocyanates [a mixture of 2,4‐ (80%) and 2,6‐ (20%) isomers] to give water‐soluble polyurethanes. The aqueous solutions of these polyurethanes caused thermally induced precipitation at a particular temperature depending on the sort of the thermosensitive poly(vinyl ether) segments containing oxyethylene side chains. These polyurethanes also function as polymeric surfactants, lowered the surface tension of their aqueous solutions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1641–1648, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号