首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
A hydrothermal reaction of a mixture of ZnCO3, phosphoric acid, 1, 10‐phenanthroline in H2O gave rise to large plates of a new zinc phosphate, [(C12H8N2Zn)2(HPO4)(H2PO4)2], I . The structure consists of ZnO3N2 distorted trigonal‐bipyramidal and PO4 tetrahedral units linked through their vertices to give rise to a zero‐dimensional molecular solid (monomer). The structure of the monomer appears to be similar to the secondary building unit (SBU) 4 = 1, commonly found in many fibrous zeolites. To our knowledge, this is the first time this building unit has been isolated. The structure, with a unique composition, is stabilized by hydrogen bond interactions between the terminal —OH groups forms a one‐dimensional molecular wire and also by strong π…π interactions between the 1, 10‐phenanthroline units. Photoluminescence studies show that there is a ligand‐to‐metal charge transfer (LMCT). Crystal data: orthorhombic, space group = Fdd2 (no. 43), a = 40.4669(1), b = 7.4733(2), c = 17.4425(5)Å, V = 5274.9(2)Å3, Z = 8.  相似文献   

2.

The crystal structure of the rigid bidentate nitrogen ligand bis[N-(2,6-diisopropylphenyl)imino]acenaphtene (o, o'-iPr2C6H3-BIAN) is described. Syntheses, electronic spectra and electrochemical properties of two copper complexes containing (o,o'-iPr2C6H3-BIAN), namely, [CuCl(o,o'-iPr2C6H3-BIAN)2]Cl (1) and [Cu(o,o'-iPr2C6H3-BIAN)2](CIO4)(AcOH)2 (2), where AcOH=acetic acid, are reported. Although in both complexes two o,o'-iPr2C6H3-BIAN ligands are coordinated, geometries about the copper atom are significantly different. While complex 2 displays a strongly "flattened" distortion towards square-planar geometry, in complex 1 square-pyramidal coordination with an almost perfect planar arrangement of two o,o'-iPr2C6H3-BIAN ligands around the copper centre is suggested.  相似文献   

3.
The new rigid bidentate nitrogen ligands 1, 2‐bis[(2, 5‐di‐tert‐butylphenyl)imino]acenaphthene ( 1 ) (dtb‐BIAN) and 1, 2‐bis[(2‐biphenyl)imino]acenaphthene ( 2 ) (bph‐BIAN) have been synthesized by condensation of 1, 2‐acenaphthylenedione with 2, 5‐di‐tert‐butylaniline and 2‐aminobiphenyl, respectively. Reduction of 1 and 2 with magnesium and calcium results in the formation of the monomeric metal complexes [(dtb‐BIAN)Mg(THF)2] ( 3 ), [(bph‐BIAN)Mg(DME)2] ( 4 ), and [(bph‐BIAN)Ca(THF)3] ( 5 ). Compounds 1 — 5 have been characterized by C/H analyses, IR, 1H NMR, and 13C NMR spectra, the structures of 2 , 3 , and 5 have been estimated by single crystal X‐ray diffraction.  相似文献   

4.
The red colour of the novel organonickel complex [(dppz)Ni(Mes)Br] (dppz = dipyrido[3,2‐a:2′,3′‐c]phenazine, Mes = 2,4,6‐trimethylphenyl) originates from long‐wavelength MLCT/L′LCT charge transfer bands. However, luminescence in dilute solution comes presumably from the 3π‐π* (phenazine) excited state. The red‐shifted emission exhibited in concentrated solutions is assigned to dimers. In the solid state emission is quenched. The crystal structure reveals two different types of π‐π stacking along the crystallographic a axis.  相似文献   

5.
Three mononuclear copper(II) complexes of copper nitrate with 2, 6‐bis(pyrazol‐1‐yl)pyridine ( bPzPy ) and 2, 6‐bis(3′,5′‐dimethylpyrazol‐1‐yl)pyridine ( bdmPzPy ), [Cu(bPzPy)(NO3)2] ( 1 ), [Cu(bPzPy)(H2O)(NO3)2] ( 2 ) and [Cu(bdmPzPy)(NO3)2] ( 3 ) were synthesized by the reaction of copper nitrate with the ligand in ethanol solution. The complexes have been characterized through analytical, spectroscopic and EPR measurements. Single crystal X‐ray structure analysis of complexes 1 and 2 revealed a five‐coordinate copper atom in 1 , whereas 2 contains a six‐coordinate (4+2) CuII ion with molecular units acting as supramolecular nodes. These neutral nodes are connected through O–H ··· O(nitrate) hydrogen bonds to give couples of parallel linear strips assembled in 1D‐chains in a zipper‐like motif.  相似文献   

6.
1,3‐Bis(5‐nitraminotetrazol‐1‐yl)propan‐2‐ol ( 5 ) was prepared by the reaction of 5‐aminotetrazole and 1,3‐dichloroisopropanol under basic conditions. Obtained 1,3‐bis(5‐aminotetrazol‐1‐yl)propan‐2‐ol ( 3 ) was nitrated with 100 % nitric acid. In this context in situ hydrolysis of the nitrate ester was studied. Metal and nitrogen‐rich salts of the neutral compound 5 were prepared and analyzed. Crystal structures of three salts and the sensitivities toward impact, friction and electrostatic discharge were determined as well. The performance values of the compounds were calculated using the EXPLO5 program. A detailed comparison of the different salts is also enclosed.  相似文献   

7.
1,2-Bis[(trimethylsilyl)imino]acenaphthene (1) was synthesized by the reaction of acenaphthenequinone with (Me3Si)2NLi in toluene followed by treatment of the reaction product with trimethylchlorosilane. The dianionic derivative [(tms-BIAN)Li2]2 (3) was obtained as the final product by reduction of compound 1 with lithium in toluene, whereas reduction in diethyl ether afforded the tetraanion [(tms-BIAN)Li4(Et2O)3]2 (5). The formation of the paramagnetic mono-and trianions in solution was confirmed by ESR spectroscopy. Compounds 3 and 5 were isolated in the crystalline state and characterized by elemental analysis, IR spectroscopy, and NMR spectroscopy. The crystal structures of 1, 3, and 5 were established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 697–705, April, 2006.  相似文献   

8.
Two two‐dimensional (2‐D) trz‐based coordination polymers, {[Zn(trz)(mb)]·H2O}n ( 1 ) and {[Zn(trz)(ca)]·H2O}n ( 2 ) (Htrz = 1,2,4‐triazole, Hmb = 4‐methylbenzoic acid, and Hca = trans‐cinnamic acid), have been synthesized by diffusion method and fully structural characterized by elemental analysis, FT‐IR, single‐crystal X‐ray crystallography, TG and fluorescence spectra. Structural analysis reveals that both complexes exhibit the analogous 2‐D ZnII‐trz layer motif with hydrophobic aromatic rings attached on both sides despite their different crystal system and space group (orthorhombic, Pbca for 1 and monoclinic, P21/c for 2 ). Interestingly, the discrete water‐dimer and infinite 1‐D water‐chain were observed to be entrapped in the 2‐D layer of 1 and 2 , respectively, resulted from the different orientation of lattice water molecules as well as the patterns of hydrogen bonds involved. In addition, their similiar thermal behaviors and fluorescence emissions originated from intraligand electronic transfer were also investigated and compared.  相似文献   

9.
The reactions of H2C[C(Me)N(C6H3‐2, 6‐i‐Pr2)]2 ((DPP)2NacNacH) and Zn(C6F5)2 · 2 EtCN or Cd(C6F5)2 · 2 MeCN in a molar ratio of approximately 1:1 selectively gave the derivatives (DPP)2NacNacMC6F5 (M = Zn, Cd) in excellent yields. No reaction was observed between (DPP)2NacNacH and Hg(C6F5)2 under similar conditions. Reactions with Hg(C6F5)OCOMe yielded the products of dismutation, Hg(C6F5)2 and Hg(OCOMe)2. (DPP)2NacNacZnC6F5 crystallises as a 1:1 adduct with THF with two independent molecules per unit cell (triclinic, P1 (no. 2)). The zinc atom is tetrahedrally surrounded by the chelating ligand, the pentafluorophenyl group and one THF molecule. A similar situation is found in the 1:1 adduct of (DPP)2NacNacCdC6F5 and DMF (monoclinic, P21/n (no. 14)), while in the donor‐free compound (CDCl3 and H2O co‐crystallize) the cadmium atom is nearly ideally trigonal planar co‐ordinated (orthorhombic, Pbnm (no. 62)).  相似文献   

10.
11.
Reactions of ZnX2 (X = Cl, Br) with equimolar amounts of Li[t‐BuC(NR)2] (R = i‐Pr, Cy) yielded mono‐amidinate complexes [{t‐BuC(NR)2}ZnX]2 (X = Cl, R = i‐Pr 1 , Cy 2 ; X = Br, R = i‐Pr 3 , Cy 4 ), whereas reactions with two equivalents of Li‐amidinate resulted in the formation of the corresponding bis‐amidinate complexes [t‐BuC(NR)2]2Zn (R = i‐Pr 5 , Cy 6 ). 1 ‐ 6 were characterized by elemental analyses, IR, mass and multinuclear NMR spectroscopy (1H, 13C), and single crystal X‐ray analysis ( 1 , 2 , 3 , 6 ). In addition, the single crystal X‐ray structure of [t‐BuC(NCy)2]ZnBr·LiBr(OEt2)2 7 , which was obtained as a byproduct in low yield from re‐crystallization experiments of 4 in Et2O, is reported.  相似文献   

12.
Two polymorphs of a zero‐dimensional (molecular) zinc phosphate with the formula [Zn(2,2′‐bipy)(H2PO4)2]2 have been synthesized by a mild hydrothermal route and their crystal structures were determined by single crystal X‐ray diffraction (triclinic, space group (No. 2), Z = 2, α‐form: a = 8.664(1), b = 8.849(2), c = 10.113(2) Å, α = 97.37(2)°, β = 100.54(2)°, γ = 100.98(2)°, V = 737.5(3) Å3; β‐form: a = 7.5446(15), b = 10.450(2), c = 10.750(2) Å, α = 67.32(3)°, β = 81.67(3)°, γ = 69.29(3)°, V = 731.4(3) Å3). Both structures consist of distorted trigonal‐bipyramidal ZnO3N2 units condensed with PO2(OH)2 tetrahedra through common vertices giving rise to dimers [Zn(2,2′‐bipy)(H2PO4)2]2. The structures are stabilized by extensive inter‐ and intramolecular hydrogen bond interactions. Both modifications display subtle differences in their packing originating from the hydrogen bond interactions as well as π…π interactions between the organic ligands.  相似文献   

13.
The behavior of N,N′‐bis(pyridin‐2‐ylmethylene)benzene‐1,4‐diamine (L) towards zinc(II), cadmium(II), and mercury(II) chlorides was studied in methanol solutions. In the presence of metal ions, the organic molecule was decomposed to N‐(pyridin‐2‐ylmethylene)benzene‐1,4‐diamine (L′), and complexes of general formula M(L′)Cl2 were isolated from the mixture. The complexes were identified by elemental analysis, IR, 1H NMR, and 13C NMR spectra, and their structures were further confirmed by single‐crystal X‐ray diffraction analysis of Zn(L′)Cl2 and Hg(L′)Cl2. In the solid state of both complexes, the molecules are stabilized by N–H ··· Cl hydrogen bonds and aromatic π–π stacking interactions.  相似文献   

14.
Complexes [NiI3(mpta)2]I ( 1 ) and [NiI3(ppta)2]I ( 2 ) have been synthesized by reaction of nickel(II) halide salts with ‐1‐methyl‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane iodide (mpta+I?) and 1‐(n‐propyl)‐1‐azonia‐3,5‐diaza‐7‐phosphatricyclo[3.3.1.13,7]decane bromide (ppta+Br?) respectively. The crystal structures of compounds 1 and 2 are described and are similar, with both compounds crystallizing in monoclinic space groups. The geometry about both nickel atoms is that of a trigonal bipyramid with the cationic phosphine ligands found in the axial positions and the iodide ligands arranged in the equatorial plane.  相似文献   

15.
Reaction of thiocarbohydrazide with glyoxolic acid monohydrate led to 4‐amino‐3‐thioxo‐3,4‐dihydro‐1,2,4‐triazin‐5(2H)‐one (AHTTO, 1 ). Treatment of 1 with AgNO3 and PPh3 gave thecomplexes [(PPh3)2Ag2(μ‐N,S‐AHTTO)2](NO3)2 ( 2 ) and [(PPh3)2Ag(AHTTO)]NO3 · MeOH ( 3 ) was obtained under different conditions. All the compounds have been characterized by elemental analyses, IR spectroscopy and X‐ray diffraction studies.  相似文献   

16.
A series of [(4‐methylphenyl)sulfonyl]‐1H‐amido‐2‐phenyl‐2‐oxazoline ligands, HTs‐ROz, has been synthesized by the reaction of substituted 2‐(2‐aminophenyl)oxazolines and p‐toluensulfonyl chloride. The electrochemical oxidation of a sacrificial zinc anode in an acetonitrile solution of the corresponding ligand gave compounds of general formula [Zn(Ts‐ROz)2]. All complexes have been characterized by microanalysis, IR and 1H NMR spectroscopy and single‐crystal X‐ray diffraction. In all cases, the metal atom is coordinated by the nitrogen atoms of two monoanionic ligands.  相似文献   

17.
At elevated temperatures, the aluminum complex [(dpp‐BIAN)AlI(Et2O)] ( 1 ) splits the C‐O bonds of diethyl ether and tetrahydrofurane yielding the dimeric alkoxides [(dpp‐BIAN)AlOEt]2 ( 2 ) and [(dpp‐BIAN)AlO(CH2)4I]2 ( 3 ), respectively. Already at ambient temperatures, a cleavage of the C‐O bond of THF is to observe in the reaction of 1 with CpNa in THF as confirmed by the formation of [(dpp‐BIAN)AlO(CH2)4C5H5]2 ( 4a ) and [(dpp‐BIAN)Al{O(CH2)4C5H5}(THF)] ( 4b ) in a molar ratio of 1:2. The reaction of 1 with t‐BuOK affords the monomeric alkoxide [(dpp‐BIAN)AlO‐t‐Bu(Et2O)] ( 5 ). Compounds 2 , 3 , and 4a/b were characterized by elemental analyses and IR spectra. Additionally, the structures of 2 and 3 were determined by single crystal X‐ray diffraction.  相似文献   

18.
The monomeric β‐diketiminate zinc complex (Mes)NacNacZnMe 1 (MesNacNac = {[2,6‐(2,4,6‐Me3‐C6H2)N(Me)C)]2CH}) was obtained in almost quantitative yield from the reaction of ZnMe2 with (Mes)NacNacH. Reaction of 1 with either Me3NHCl or a solution of HCl in Et2O yielded (Mes)NacNacZnCl 2 , whereas (Mes)NacNacZnI 3 was obtained from the reaction of 1 with I2. 1 – 3 were characterized by elemental analyses, mass and multinuclear (1H, 13C{1H}) NMR spectroscopy, 3·THF also by single crystal X‐ray analysis.  相似文献   

19.
The ligand N,N‐dimethyl(N′‐trimethylsilyl)ethane‐1,2‐diamine (HL) was treated with ZnEt2 in varying stoichiometric ratios to synthesize [EtZnL]2 and [ZnL2] complexes. Crystal data: [EtZnL]2, monoclinic, P21/n, a = 10.0149(5) Å, b = 8.0296(3) Å, c = 16.1689(8) Å, β = 91.715(2)°. [ZnL2], monoclinic, P21/n, a = 8.8457(3) Å, b = 15.4249(6) Å, c = 16.0121(7) Å, β = 92.656(1)°. The former complex is an amido nitrogen bridged dimer with distorted tetrahedral stereochemistry of the zinc atom and the latter is a distorted tetrahedral monomer based on amide/amine chelation.  相似文献   

20.
5‐(2‐Cyanoethyl)‐1,1′‐biphenyl‐2‐carboxylates were prepared by regioselective formal [3+3] cyclocondensations of 1,3‐bis[(trimethylsilyl)oxy]buta‐1,3‐dienes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号