首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Four new 2,1,3‐benzooxadiazole‐based donor–acceptor conjugated polymers, namely poly{9‐(9‐heptadecanyl)‐9H‐carbazole‐alt‐5,6‐bis(octyloxy)‐4,7‐di(selenophen‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PSBSC), poly{9‐(9‐heptadecanyl)‐9H‐carbazole‐alt‐5,6‐bis(octyloxy)‐4,7‐di(furan‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PFBFC), poly{9,9‐dioctyl‐9H‐fluorene‐alt‐5,6‐bis(octyloxy)‐4,7‐di(selenophen‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PSBSFL), and poly{9,9‐dioctyl‐9H‐fluorene‐alt‐5,6‐bis(octyloxy)‐4,7‐di(furan‐2‐yl)benzo[c][1,2,5]oxadiazole)}(PFBFFL), were synthesized via Stille polycondensation reaction. All polymers were found to be soluble in common organic solvents such as chloroform, tetrahydrofuran, and chlorobenzene. Their structures were verified by 1H‐NMR and the molecular weights were determined by gel permeation chromatography (GPC). The polymer films exhibited broad absorption bands. Among all polymers, photovoltaic cells based on the device structure of ITO/PEDOT:PSS/PSBSC:PC71BM(1:3, w/w)/LiF/Al revealed an open‐circuit voltage of 0.62 V, a short circuit current of 7.63 mA cm?2 and a power conversion efficiency of 1.89%. This work demonstrates a good example for tuning absorption range, energy level, and photovoltaic properties of the polymers with different spacers and donor units can offer a simple and effective method to improve the efficiency of PSCs. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2459–2467  相似文献   

2.
A series of poly[9‐(heptadecan‐9‐yl)‐9H‐carbazole‐2,7‐diyl‐alt‐(5,6‐bis‐(octyloxy)‐4,7‐di(thiophen‐2‐yl)benzo‐[1,2,5]‐thia‐diazole)‐5,5‐diyl] compositions containing various ratios of 3,6‐carbazole was synthesized for testing in a polymer solar cell. An appropriate amount of 3,6‐carbazole units incorporated into the copolymer improved intermolecular charge transport, whereas excess amount of 3,6‐carbazole units temporarily seized on the partial negative charge generated in the conjugation breaks. We extensively studied the effects of the incorporated 3,6‐carbazole units on the intermolecular interactions, which can affect nongeminated recombination in bulk heterojunction‐polymer solar cells. These properties were investigated using photocurrent‐ and light intensity‐dependent measurements and electrochemical impedance spectroscopy. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2047–2056  相似文献   

3.
Two conjugated main‐chain polymers consisting of heteroarene‐fused π‐conjuagted donor moiety alternating with 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5]thiadiazole (P1) or 2,5‐bis(5‐bromo‐4‐octylthiophen‐2‐yl) thiazolo[5,4‐d]thiazole (P2) units have been synthesized. They are intrinsically amorphous in nature and do not exhibit crystalline melting temperatures during thermal analysis. The effect of the fused rings on the thermal, optical, electrochemical, charge transport, and photovoltaic properties of these polymers has been investigated. The polymer (P1) containing 4,7‐bis(5‐bromo‐4‐octylthiophen‐2‐yl)benzo[c][1,2,5] thiadiazole has a broad absorption extending from 300 to 600 nm with optical bandgaps as low as 2.02 eV. The HOMO levels (5.42 to 5.29 eV) are more sensitive to the choice of acceptor. The polymers were employed to fabricate organic photovoltaic cells with methanofullerene [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM). As a result, the polymer solar cell device containing P1 had the best preliminary results with an open‐circuit voltage of 0.61 V, a short‐circuit current density of 6.19 mA/cm2, and a fill factor of 0.32, offering an overall power conversion efficiency of 1.21%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
Here, a family of donor/acceptor (D/A) alternating copolymers and random two‐acceptor and three‐acceptor copolymers were synthesized via Suzuki polymerization based on heptadecan‐9‐yl substituted carbazole as a donor and 4,7‐Bis(5‐bromothiophene‐2‐yl)benzo[c][1,2,5]thiadiazole (DTBT), 2,5‐diethylhexyl‐3,6‐bis(5‐bromothiophene‐2‐yl)pyrrolo[3,4‐c]‐pyrrole‐1,4‐dione (DPP) and 2,8‐dibromo‐4,10‐bis(2‐ethylhexyl)thieno[2′,3′:5,6] pyrido[3,4‐g]thieno[3,2‐c]isoquinoline‐5,11(4H,10H)‐dione (TPTI) as acceptors. For the first time, a relatively new electron‐deficient TPTI unit was used as an acceptor in carbazole‐based conjugated polymers. Introduction of the electron‐deficient TPTI unit into the polymer backbone increased the open‐circuit voltage (Voc) of the resulting polymer solar cells up to 0.96 V. PCTPTI and PCDTBT‐TPTI exhibited external quantum efficiencies (EQE) up to 75%. All random two‐acceptor copolymers showed broadened absorption profiles compared to the D/A alternating analogues. In order to further improve the light absorption, a random three‐acceptor copolymer was synthesized for the first time, resulting in the broadest absorption in the range of 350–750 nm. Highest occupied molecular orbital (HOMO) energies and Voc values of the resulting polymers could be successfully tuned by introducing different monomer units into the polymer backbone in different ratios. These results indicate that TPTI is a promising acceptor unit for conjugated polymers and that the random copolymer approach is a successful tool for fine tuning of polymer properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2781–2786  相似文献   

5.
A new liquid crystalline (LC) acceptor monomer 2,5‐bis[4‐(4′‐cyanobiphenyloxy)dodecyl]‐3,6‐dithiophen‐2‐yl‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione (TDPPcbp) was synthesized by incorporating cyanobiphenyl mesogens into diketopyrrolopyrrole (DPP). The monomer was copolymerized with bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′] dithiophene (BDT) and N‐9′‐heptadecanylcarbazole (CB) donors to obtain donor–acceptor alternating copolymers poly[4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐3,6‐bis(thiophen‐5‐yl)‐2,5‐bis[4‐(4′‐cyanobiphenyloxy)dodecyl]‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione] (PBDTDPPcbp) and poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐3,6‐bis(thiophen‐5‐yl)‐2,5‐bis[4‐(4′‐cyano‐biphenyloxy)dodecyl]‐2,5‐dihydropyrrolo[3, 4‐c]pyrrole‐1,4‐dione] (PCBTDPPcpb) with reduced band gap, respectively. The LC properties of the copolymers, the effects of main chain variation on molecular packing, optical properties, and energy levels were analyzed. Incorporating the mesogen cyanobiphenyl units not only help polymer donors to pack well through mesogen self‐organization but also push the fullerene acceptor to form optimized phase separation. The bulk heterojunction photovoltaicdevicesshow enhanced performance of 1.3% for PBDTDPPcbp and 1.2% for PCBTDPPcbp after thermal annealing. The results indicate that mesogen‐controlled self‐organization is an efficient approach to develop well‐defined morphology and to improve the device performance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
With the D‐A integrated structure concept, a new donor–acceptor (D‐A) copolymer poly{(N‐dodecyl‐carbazole[3,4‐c:5,6‐c]bis[1,2,5]thiadiazole‐alt‐4,8‐di(2‐ethylhexy‐loxyl)benzo[1,2‐b:4,5‐b′]dithiophene)} has been designed and synthesized using a novel architecture N‐dodecyl‐carbazole[3,4‐c:5,6‐c]bis[1,2,5]thiadiazole, and di(2‐ethylhexy‐loxyl)benzo[1,2‐b:4,5‐b′]dithiophene) as the basic building blocks. The copolymer has a low‐lying highest occupied molecular orbital energy level of ?5.41 eV and a broaden absorption matching well with the main solar photon flux. Note that an H‐aggregation beneficial for charge transportation and collection is formed in the macromolecules film, which implies that the planar D‐A integrated structure favors the strong intermolecular interaction to render molecules aggregated via face‐to‐face self‐assembly. The aggregation becomes larger scale after thermal annealing. Additionally, obvious intramolecular charge transfer and energy transfer have occurred in created D‐A integration. Without any treatment, the resulting polymer achieved a efficiency of 2.0% and relatively high open‐circuit voltage (Voc) value of 0.77 V when blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester in a typical bulk heterojunction. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Four D–A–D type co‐oligomers have been synthesized by Stille condensation between monostannyl derivatives of furan/thiophene/selenophene/3,4‐ethylenedioxythiophene (EDOT) and 4,7‐dibromo‐benzo[1,2,5]oxadiazole. All these co‐oligomers were successfully electrochemically polymerized in dichloromethane and characterized by spectroelectrochemistry. All four polymers possess narrow optical band gap. Spectroelectrochemical studies of polymer films on indium tin oxide revealed that the replacement of donor EDOT with furan/thiophene/selenophene has affected the low‐energy charge‐carrier (bipolaron) formation significantly. Kinetic studies based on chronoamperometry show that the polymer P5 (EDOT‐capped benzo[1,2,5]oxadiazole system) possess better electrochromic property with high transmittance (66%) in visible region than the other copolymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Low‐band‐gap π‐conjugated polymers composed of π‐excessive thiophene and π‐deficient benzothiadiazole and quinoxaline units were prepared in high yields by a polycondensation method using palladium cross‐coupling reactions of alkylthiophene diacetylenes, 4,7‐dibromo‐2,1,3‐benzothiadiazole, and 5,8‐dibromo‐2,3‐dipyridine‐2‐ylquinoxaline. The copolymers were characterized by NMR, IR, UV, gel permeation chromatography, and elemental analysis. High‐molecular‐weight (weight‐average molecular weight up to 82,600 g/mol), thermostable, soluble, and film‐forming materials were obtained. The polymers were photoluminescent in chloroform and showed metallic luster in the solid state. The absorption and emission in solution and in the solid state of the polymers revealed that the polymers generated a π‐stacked structure in the solid state, and the polymer molecules in the film were ordered. Thin films of poly[3‐dodecylthiophen‐2,5‐diylethynylene‐(benzo[1,2,5]thiadiazole‐4,7‐diyl)ethynylene] ( P‐1 ), poly[3,4‐di dodecylthiophen‐2,5‐diylethynylene‐(benzo[1,2,5]thiadiazole‐4,7‐diyl)ethynylene] ( P‐2 ), poly[3‐dodecylthiophene‐2,5‐diylethynylene‐(2,3‐dipyridine‐2‐ylquinoxaline‐5,8‐diyl)ethynylene] ( P‐3 ), and poly[3,4‐didodecylthiophene‐2,5‐diylethynylene‐(2,3‐dipyridine‐2‐ylquinoxaline‐5,8‐diyl)‐ethynylene] ( P‐4 ) exhibited an optical band gap of ~1.85–2.08 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the polymers were determined from electrochemical measurements. In the absorption and emission spectra of these polymers in chloroform/methanol mixtures, all the polymers revealed solvatochromic effects, which were related to the formation of aggregates, as confirmed by temperature‐dependence absorption investigations. The absorption spectra of P‐2 and P‐4 at different temperatures also revealed significant effects of the structure on the molecular interactions. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6445–6454, 2005  相似文献   

9.
Poly(p‐divinylene phenylene) derivatives bearing fluorene and carbazole units in the main chain and 5‐phenyl‐1,3,4‐oxadiazole moieties as side groups were prepared by the polycondensation of a newly synthesized monomer, [2‐(5′‐phenyl‐1′,3′,4′‐oxadiazole‐2′‐yl)‐1,4‐xylylene]bis(triphenyl phosphonium bromide) (OXAD), with 9,9‐dibutylfluorene‐2,2′‐dicarbaldehyde (DBFDA) and 9‐(2‐ethylhexyl)carbazole‐3,6‐dicarbaldehyde (EHCDA), which gave DBFDA–OXAD and EHCDA–OXAD. Analogues of these polymers without the side groups were also synthesized by the reaction of 1,4‐xylene bis(triphenyl phosphonium bromide) (PXYL) with the dicarbaldehydes, which gave DBFDA–PXYL and EHCDA–PXYL. All the synthesized polymers are soluble in organic solvents, giving films of good quality. The polymers are stable beyond 375 °C. They emit blue and blue‐green light, and their quantum yields are 38–79% in solution and 1–24% in film, depending on the fluorene and carbazole units as well as the side groups. In particular, the OXAD‐based polymers contain hole‐facilitating backbones and electron‐facilitating side groups, perhaps allowing these polymers to transport both holes and electrons. Overall, the synthesized polymers are potential candidates for the fabrication of light‐emitting devices. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1173–1183, 2002  相似文献   

10.
Three alternating donor–acceptor copolymers have been synthesized by Stille coupling polymerization of 2,6‐(trimethyltin)?4,8‐bis(5‐dodecylthiophene‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene with 1,3‐dibromo‐5‐hexylthieno[3,4‐c]pyrrole‐4,6‐dione, 4,7‐dibromo‐1,3‐benzothiadiazole, and 5,7‐dibromo‐2,3‐didodecylthieno[3,4‐b]pyrazine, respectively. The synthesized polymers were tested in bulk heterojunction solar cells as blends with the acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). The thienopyrroledione copolymer displayed a power conversion efficiency of 3.00% which was increased to 3.86% by application of the additive 1,8‐diiodooctane (DIO). Tapping mode atomic force microscopy analysis indicated that there was an increase in the phase separation between polymer and PCBM, leading to an improvement in the performance upon the addition of DIO. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2622–2630  相似文献   

11.
Two new low‐bandgap alternating copolymers (CEHTF and CEHTP) consisting of 4,6‐bis(3′‐(2‐ethylhexyl)thien‐2′‐yl)thieno[3,4‐c][1,2,5] thiadiazole and 9,9‐bis(2‐ethylhexyl)fluorene or 2,5‐bis(isopentyloxy)benzene were synthesized by Suzuki coupling reaction of corresponding comonomers. Their optical, electrochemical, and photovoltaic (PV) properties were studied and are reported. Both the copolymers exhibited long‐wavelength absorption covering the whole visible spectral region, which is in CEHTP thin films extended up to near infrared region, ambipolar redox properties, and electrochromism. High‐electron affinities and low‐optical bandgap values, 1.37 and 1.15 eV, were determined for CEHTF and CEHTP, respectively. PV devices with bulk heterojunction made of blends of copolymers and fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester ([60]PCBM) were prepared and characterized. Effects of intramolecular charge transfer strength and side‐chain nature and length on photophysical properties are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
To investigate the effect of trifluoromethyl groups in enhancing electron affinity of aromatic oxadiazole and triazole chromophores, we prepared four new copoly(aryl ether)s ( P1 – P4 ) consisting of bis(3‐(trifluoromethyl) phenyl)‐1,3,4‐oxadiazole (ETO) or bis(3‐(trifluoromethyl)phenyl)‐4‐(4‐hexyloxyphenyl)‐4H‐1,2,4‐triazole (ETT) segments and hole‐transporting segments [2,5‐distyrylbenzene (HTB) or bis(styryl)fluorine (HTF)]. Molecular spectra (absorption and photoluminescence) and cyclic voltammetry were used to investigate their optical and electrochemical properties. The emissions of P1 – P4 are dominated by the hole‐transporting fluorophores with longer emissive wavelengths around 442–453 nm via efficient excitation energy transfer. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of P1 – P4 , estimated from electrochemical data, are ?5.15, ?5.18, ?5.30, ?5.27, ?3.39, ?3.49, ?3.36, and ?3.48 eV, respectively. The LUMO levels of ETO and ETT segments are significantly reduced to ?3.39~?3.36 eV and ?3.48~?3.49 eV, respectively, as compared with ?2.45 eV of P5 containing a 2,5‐diphenyl‐1,3,4‐oxadiazole segment. Moreover, electron and hole affinity can be enhanced simultaneously by introducing isolated hole‐ and electron‐transporting segments in the backbone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5900–5910, 2004  相似文献   

13.
A new carbazole‐based electron accepting unit, 5‐(2,7‐dibromo‐9H‐carbazol‐9‐yl)benzo[a]phenazine (CBP), was newly designed and synthesized as the acceptor part of donor‐acceptor type low band‐gap polymers for polymer solar cells. The CBP was copolymerized with electron donating monomers such as benzo[1,2‐b:4,5‐b′]dithiophene (BDT) or 4,8‐bis(2‐octyl‐2‐thienyl)‐benzo[1,2‐b:4,5‐b′]dithiophene (BDTT) through Stille cross‐coupling polymerization, and produced two alternating copolymers, PBDT‐CBP and PBDTT‐CBP. An alternating copolymer (PBDT‐CBZ) consisted of 2,7‐dibromo‐9‐(heptadecan‐9‐yl)‐9H‐carbazole (CBZ) and BDT units was also synthesized for comparison. PBDT‐CBZ showed the maximum absorption at 430 nm and did not show absorption at wavelengths longer than 513 nm. However, CBP containing polymers (PBDT‐CBP and PBDTT‐CBP) showed a broad absorption between 300 and 850 nm due to the intramolecular charge transfer interaction between the electron donating and accepting blocks in the polymeric backbone. Bulk heterojunction photovoltaic devices were fabricated using the synthesized polymers as electron donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as electron acceptor. One of these devices showed a power conversion efficiency of 2.33%, with an open‐circuit voltage of 0.81 V, a short‐circuit current of 6.97 mA/cm2, and a fill factor (FF) of 0.41 under air mass (AM) 1.5 global (1.5 G) illumination conditions (100 mW/cm2). © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013, 51, 2354–2365  相似文献   

14.
New donor–acceptor (D‐A) polymers, poly(4,5‐bis(2‐octyldodecyloxy)naphto[2,1‐b:3,4‐b']dithiophenebenzo[c][1,2,5]thiadiazole) (PNDT‐B) and poly(4,5‐bis(2‐octyldodecyloxy)naphto [2,1‐b:3,4‐b′]dithiophene‐4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole) (PNDT‐TBT), with the extended π‐electron delocalization of naphtho[2,1‐b:3,4‐b']dithiophene, were successfully synthesized by Suzuki and Stille coupling reactions. The structure and physical properties of polymers were characterized by DFT calculation, UV–vis absorption, cyclovoltammetry, TGA and DSC analyses. X‐ray diffraction studies indicated a relatively highly ordered intermolecular structure in PNDT‐TBT after annealing. This high degree of molecular order resulted from the crystallinity and increasing planarity, provided by the thiophene linker groups and the interdigitation of the long alkoxy side chains. The new D‐A polymer, PNDT‐TBT, exhibited a p‐type carrier mobility of 0.028 cm2/Vs and an on/off ratio of 5.9 × 103. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 525–531  相似文献   

15.
A series of three new low bandgap donor–acceptor–donor–acceptor/ (D–A–D–A/) polymers have been successfully synthesized based on the combination of isoindigo as the electron‐deficient acceptor and 3,4‐ethylenedioxythiophene as the electron‐rich donor, followed by CH‐arylation with different acceptors (4,7‐dibromo[c][1,2,5]‐(oxa, thia, and/or selena)diazole ( 4a‐c )). These polymers were used as donor materials for photovoltaic applications. All of the polymers are highly stable and show good solubility in chlorinated solvents. The highest power conversion efficiency of 1.6% was achieved in the bulk heterojunction photovoltaic device that consisted of poly ((E)?6‐(7‐(benzo‐[c][1,2,5]‐thiadiazol‐4‐yl)?2,3‐dihydrothieno‐[3,4‐b][1,4]dioxin‐5‐yl)?6′‐(2,3‐dihydrothieno‐[3,4‐b][1,4]‐dioxin‐5‐yl)?1,1′‐bis‐(2‐octyldodecyl)‐[3,3′‐biindolinylidene]‐2,2′‐dione) as the donor and PC61BM as the acceptor, with a short‐circuit current density (Jsc) of 8.10 mA/cm2, an open circuit voltage (Voc) of 0.56 V and a fill factor of 35%, which indicates that these polymers are promising donors for polymer solar cell applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2926–2933  相似文献   

16.
A new nano‐sized rigid double‐armed oxadiazole‐bridged organic ligand, 2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl)ethenyl]phenyl}‐1,3,4‐oxadiazole, C30H20N4O, L or (I), which adopts a cis conformation in the solid state, has been synthesized and used to create the two novel metallocycle complexes (2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl‐κN)ethenyl]phenyl}‐1,3,4‐oxadiazole)diiodidocadmium(II) dichloromethane monosolvate, [CdI2(C30H20N4O)]·CH2Cl2, (II), and di‐μ‐iodido‐bis[(2,5‐bis{2‐methyl‐5‐[2‐(pyridin‐3‐yl‐κN)ethenyl]phenyl}‐1,3,4‐oxadiazole)copper(I)], [Cu2I2(C30H20N4O)2], (III). Molecules of complex (II) adopts a 20‐membered `0'‐shaped metallocycle structure with crystallographic mirror symmetry. The discrete units are linked into one‐dimensional chains through intermolecular π–π and C—H...π interactions. In (III), the two I atoms and two CuI atoms form a {Cu2(μ‐I)2} cluster. One {Cu2(μ‐I)2} cluster and two L ligands form two 20‐membered monometallic rings in a head‐to‐head fashion, leading to a discrete centrosymmetric `8'‐shaped metallocyclic complex. These metallocycles stack together via two kinds of intermolecular π–π interactions to generate a two‐dimensional network in the ac plane. The luminescence properties of (I)–(III) were investigated in the solid state at room temperature and displayed an obvious red shift.  相似文献   

17.
The molecular materials with structures of luminescent core and peripheral carrier groups (e.g. carbazoles), have exhibited high‐performance in organic light‐emitting diodes (OLEDs). Present work is to understand the basic process of electronic and energy exchange between the peripheral functional groups and the central core through quantum chemical analysis. As an example, 4,7‐bis(9,9‐bis(6‐(9H‐carbazol‐9‐yl)hexyl)‐9H‐fluoren‐2‐yl)benzo[c]‐[1,2,5]thiadiazole (TCBzC) is investigated in regards to optoelectronic properties using density functional theory (DFT). The results suggest that the forbidden transition from peripheral carbazole to the central chromophore core makes for separated electrical and optical properties, and high performance electroluminescence (EL) is mainly attributed to the energy‐transfer from carbazoles to the fluorene derivative core  相似文献   

18.
In an effort to decrease the electron‐injection barrier from the anode electrode, four copoly(aryl ether)s ( P1 – P4 ), consisting of alternating isolated electron‐transporting [2,5‐diphenyl‐1,3,4‐oxadiazole for P1 and P3 and 5,5′‐diphenyl‐2,2′‐p‐(2,5‐bishexyloxyphenylene)‐bis‐1,3,4‐oxadiazole for P2 and P4 ] and emitting chromophores (1,4‐distyryl‐2,5‐dihexyloxybenzene for P1 and P2 and 1,4‐distyryl‐2,5‐dihexylbenzene for P3 and P4 ), have been synthesized by the nucleophilic displacement reaction between bisfluoride and bisphenol monomers. They are basically amorphous materials with 5% weight‐loss temperature above 400 °C. The photoluminescence spectra and quantum yields of these copolymers are dependent on the compositions of the two isolated fluorophores. The highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of these copolymers have been estimated from their cyclic voltammograms. All the observations directly prove that the oxidation starts at the hole‐transporting segments. The electron affinity can be enhanced by the introduction of isolated electron‐transporting segments that lead to a charge‐injection balance. Single‐layer light‐emitting diodes (Al/ P1 – P4 /ITO glass) have been fabricated. P1 and P2 reveal blue electroluminescence, and P3 and P4 reveal purple‐blue electroluminescence. Moreover, the incorporation of bisoxadiazole units increases the electron affinity and reduces the turn‐on electric field better than one oxadiazole unit. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2765–2777, 2003  相似文献   

19.
The cyclization of 1‐amino‐2‐mercapto‐5‐[1‐(4‐ethoxyphenyl)‐5‐methyl‐1,2,3‐triazol‐4‐yl]‐1,3,4‐triazole which was synthesized from p‐ethoxyaniline with various triazole acid in absolute phosphorus oxychloride yields 3,6‐bis(1,2,3‐triazolyl)‐s‐triazolo[3,4‐b]‐1,3,4‐thiadiazole derivatives 9a?j , and their structures are established by MS, IR, CHN and 1H NMR spectral data.  相似文献   

20.
2,5‐Bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole (L), C26H20N4O, forms one‐dimensional chains via two types of intermolecular π–π interactions. In catena‐poly[[dichloridozinc(II)]‐μ‐2,5‐bis[4‐methyl‐3‐(pyridin‐3‐yl)phenyl]‐1,3,4‐oxadiazole], [ZnCl2(C26H20N4O)]n, synthesized by the combination of L with ZnCl2, the ZnII centres are coordinated by two Cl atoms and two N atoms from two L ligands. [ZnCl2L]n forms one‐dimensional P (plus) and M (minus) helical chains, where the L ligand has different directions of twist. The helical chains stack together via interchain π–π and C—H...π interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号