首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the synthesis and luminescence characterization of conjugated dendrimers with triazine peripheries and a distyrylanthracene core that are suitable for electroluminescence applications. The dendrimers consist of dendritic triazine wedges with high electron affinity, stilbene branches, and a distyrylanthracene core as an emitting moiety. The dendrimers have lowest unoccupied molecular orbital values of about ?2.7 eV. Photoluminescence studies have indicated that a cascade energy transfer occurs from the triazine wedges to the stilbene bridges and finally to the distyrylanthracene core. Thus, the emission wavelength is determined by the distyrylanthracene core unit. The energy‐transfer efficiency of the distyrylanthracene‐cored dendrimers is about 47 and 20% for the first and second generations, respectively. A preliminary electroluminescence property investigation has also been conducted. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5855–5862, 2006  相似文献   

2.
We have synthesized conjugated dendrimer with triazine peripheries, and their luminescence properties were investigated. The dendrimers consist of dendritic triazine wedges for electron transport, distyrylbenzene core as an emitting moiety, and t‐butyl peripheral groups for good processing properties. The dendrimers have LUMO values of about ?2.7 eV possibly because of the triazine moiety with high electron affinity. Photoluminescence study indicates that energy transfer occurs from the triazine wedges to the stilbene bridge, and finally to the core chromophore units due to a cascade decrease of bandgap from the peripheral wedge to core moiety. Therefore, the emission wavelength was determined by the structure of the core unit. The energy transfer efficiency of distyrylbenzene‐cored dendrimers was about 75 and 55% for Trz‐1GD‐DSB and Trz‐2GD‐DSB, respectively. A preliminary electroluminescence property also was investigated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 254–263, 2006  相似文献   

3.
The high efficiency and mild reaction conditions associated with the Cu(I) catalyzed cycloaddition of azides and alkynes were exploited for the covalent layer‐by‐layer synthesis of dendritic thin films on silicon wafers. The preparation of azide and alkyne‐terminated dendrimers based on bisMPA was accomplished by a divergent strategy; combinations of these monodisperse building blocks from the 2nd to the 5th generation were used for construction of the thin films. The layer‐by‐layer self assembly process proceeds under ambient conditions and was monitored by ellipsometry, XPS, and ATR‐IR, which showed extremely regular growth of the dendritic thin films. Film thickness could be accurately controlled by both the size/generation number of the dendrimers as well as the number of layers. In comparison with linear analogues, the growth of the dendritic films was significantly more controlled and defect‐free with each layer being thinner than the corresponding films prepared from the isomeric linear polymers, demonstrating the well‐defined, three‐dimensional nature of the dendritic architecture. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2835–2846, 2007  相似文献   

4.
Poly(propyl ether imine) (PETIM) dendrimers of one to three generations are used as dendritic cores to identify the influence of varying connector types that connect the dendritic core with peripheral mesogens on the emerging liquid crystalline (LC) properties. The LC properties vary in these dendritic liquid crystals, even when the dendrimer generations and thus the number of peripheral mesogenic moieties remain identical. PETIM dendrimer generations one to three, ester and amide connectors varying with succinates, phthalates, and succinamides, are studied herein. Cholesteryl moieties are installed at the peripheries through the above connectors to induce mesogenic properties. These modified dendritic liquid crystals reveal a layered mesophase structure in most ester and amide connector‐derivatives, whereas a third‐generation phthalate ester dendrimer favors a rectangular columnar mesophase structure. A transition from layered to a rectangular columnar structure results by a mere change in the connector varying between a succinate or succinamide or phthalate, within one particular dendrimer generation and without altering the underlying dendrimer core or the number of mesogenic moieties. The study demonstrates that in dendritic liquid crystals with essentially identical chemical constitutions, a change in the connector type connecting the mesogen with the dendrimer core is sufficient to change the mesophase structures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3665–3678  相似文献   

5.
The first synthesis of asymmetric dendritic‐linear‐dendritic ABC block copolymers, that contain a linear B block and dissimilar A and C dendritic fragments is reported. Third generation poly(benzyl ether) monodendrons having benzyl alcohol moiety at their “focal” point were activated by quantitative titration with organometallic anions and the resulting alkoxides were used as initiators in the “living” ring‐opening polymerization of ethylene oxide. The reaction proceeded in controlled fashion at 40–50 °C affording linear‐dendritic AB block copolymers with predictable molecular weights (Mw = 6000–13,000) and narrow molecular weight distributions (Mw/Mn = 1.02–1.04). The propagation process was monitored by size‐exclusion chromatography with multiple detection. The resulting “living” copolymers were terminated by reaction either with HCl/tetrahydrofuran or with a reactive monodendron that differed from the initiating dendron not only in size, but also in chemical composition. The asymmetric triblock copolymers follow a peculiar structure‐induced self‐assembly pattern in block‐selective solvents as evidenced by size‐exclusion chromatography in combination with multi‐angle light scattering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5136–5148, 2007  相似文献   

6.
The synthesis, structural, and retrostructural analysis of a library of self‐assembling dendrons containing triethyl and tripropyl ammonium, pyridinium and 3‐methylimidazolium chloride, tetrafluoroborate, and hexafluorophosphate at their apex are reported. These dendritic ionic liquids self‐assemble into supramolecular columns or spheres which self‐organize into 2D hexagonal or rectangular and 3D cubic or tetragonal liquid crystalline and crystalline lattices. Structural analysis by X‐ray diffraction experiments demonstrated the self‐assembly of supramolecular dendrimers containing columnar and spherical nanoscale ionic liquid reactors segregated in their core. Both in the supramolecular columns and spheres the noncovalent interactions mediated by the ionic liquid provide a supramolecular polymer and therefore, these assemblies represent a new class of dendronized supramolecular polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4165–4193, 2009  相似文献   

7.
A new type of amphiphilic macromolecule was synthesized through the attachment of a poly(ethylene glycol) chain to a permethyl‐amino‐β‐cyclodextrin ring. The structure of the product was studied with 1D and 2D NMR experiments and with MALDI‐TOF MS. The resulting comet‐shaped molecule showed self‐assembly behavior in polar solvents. The presence of supramolecular structures in aqueous media was detected with dynamic light scattering and proven also by 2D NOESY and DOSY experiments. The supramolecular structures that formed could serve as starting materials for new types of drug delivery bioconjugates containing two independent dopable sites, that is, the cyclodextrin ring and the core of the supramolecular structure. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5149–5155, 2007  相似文献   

8.
We report the first instance of facile synthesis of dumbbell‐shaped dendritic‐linear‐dendritic triblock copolymer, [G‐3]‐PNIPAM‐[G‐3], consisting of third generation poly(benzyl ether) monodendrons ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM), via reversible addition‐fragmentation chain transfer (RAFT) polymerization. The key step was the preparation of novel [G‐3]‐based RAFT agent, [G‐3]‐CH2SCSSCH2‐[G‐3] (1), from third‐generation dendritic poly(benzyl ether) bromide, [G‐3]‐CH2Br. Due to the bulky nature of [G‐3]‐CH2Br, its transformation into trithiocarbonate 1 cannot go to completion, a mixture containing ~80 mol % of 1 and 20 mol % [G‐3]‐CH2Br was obtained. Dumbbell‐shaped [G‐3]‐PNIPAM310‐[G‐3] triblock copolymer was then successfully obtained by the RAFT polymerization of N‐isopropylacylamide (NIPAM) using 1 as the mediating agent, and trace amount of unreacted [G‐3]‐CH2Br was conveniently removed during purification by precipitating the polymer into diethyl ether. The dendritic‐linear‐dendritic triblock structure was further confirmed by aminolysis, and fully characterized by gel permeation chromatography (GPC) and 1H‐NMR. The amphiphilic dumbbell‐shaped triblock copolymer contains a thermoresponsive PNIPAM middle block, in aqueous solution it self‐assembles into spherical nanoparticles with the core consisting of hydrophobic [G‐3] dendritic block and stabilized by the PNIPAM central block, forming loops surrounding the insoluble core. The micellar properties of [G‐3]‐PNIPAM310‐[G‐3] were then fully characterized. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1432–1445, 2007  相似文献   

9.
New phenylazomethine dendrimers have been developed, with each dendrimer having a unique single structure. From ultraviolet–visible absorption spectra, we determined that stannous chloride added to dendritic polyphenylaz omethine (DPA) was assembled in a stepwise manner from the core shell to the periphery. The selective binding was achieved by the electron density gradient formed in the dendrimer, and it was confirmed by shell‐selective imine reduction, transmission electron microscopy, and NMR measurements. The complex formation constants of the respective shells were estimated to be considerably different by a simulation analysis of ultraviolet–visible absorption spectra. The reversible assembly and release of iron into and out of the dendrimer were possible by electrochemical oxidation and reduction, respectively. DPA with a porphyrin at the core was found to function as an effective reduction catalyst of carbon dioxide. DPA with aryl amine at the core was demonstrated to function as a hole‐transporting material in electroluminescent devices. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3719–3727, 2005  相似文献   

10.
In this article, we report the self‐assembly of flocculation‐resistant multimolecular micelles with thermoresponsive corona from novel dendritic heteroarm star copolymers. The micelles have a core‐shell‐corona structure at room temperature according to pyrene probe fluorescence spectrometry, proton nuclear magnetic resonance (1H NMR), transmission electron microscopy, and dynamic light scattering measurements. Increasing the temperature above the lower critical solution temperature (LCST), the micelles show high flocculation‐resistant ability resulting from a structure transition from core‐shell‐corona to core‐shell confirmed by a quantitative variable temperature 1H NMR analysis method using potassium hydrogen phthalate as an external standard. A big volume change of the micelles is observed during the LCST transition. The drug loading and temperature‐dependent release properties of the micelles are also investigated by using coumarin 102 as a model drug, which displays a rapid drug release at a temperature above the LCST. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Dendritic copolymers comprising a hydrophobic core and hydrophilic shell with nearly equal numbers of hydroxyl groups in the shell and different densities in the core were prepared by a multi‐step process based on anionic ring‐opening polymerization. The diversity in the core density was obtained by using copolymer stars with poly(tert‐butyl‐glycidylether)‐block‐polyglycidol arms with nearly equal length of hydrophobic blocks and numbers of hydroxyl groups of polyglycidol but different numbers of arms as macroinitiators. The ability of the dendritic copolymers to serve as a nanocontainer for a ruthenium complex Ru(NH3)3Cl3 with anticancer properties was studied. The possibility of improving the water solubility of this poorly soluble drug by loading it onto dendritic copolymers was investigated. The hydroxyl groups of the dendritic copolymers were used for complexation of the ruthenium compound to the shell. The loading efficiency was analyzed by UV–vis spectroscopy. The dendritic nanoparticles in their hydrated state were visualized using cryo‐TEM. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3488–3497  相似文献   

12.
We describe herein the synthesis and self‐assembly characteristics of a doubly responsive AB diblock copolymer comprised of N‐isopropylacrylamide (NIPAM) and 4‐vinylbenzoic acid (VBZ). The AB diblock copolymer was prepared via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization in DMF employing a trithiocarbonate‐based RAFT agent. PolyNIPAM was employed as the macroRAFT agent. The NIPAM homopolymerization was shown to possess all the characteristics of a controlled process, and the blocking with VBZ was judged, by size exclusion chromatography, to be essentially quantitative. The NIPAM‐VBZ block copolymer was subsequently demonstrated to be able to form normal and inverse micelles in the same aqueous solution by taking advantage of the stimuli responsive characteristics of both building blocks. Specifically, and as judged by NMR spectroscopy and dynamic light scattering, raising the temperature to 40 °C (above the lower critical solution temperature of the NIPAM block), while at pH 12 results in supramolecular self‐assembly to yield nanosized species that are composed of a hydrophobic NIPAM core stabilized by a hydrophilic VBZ corona. Conversely, lowering the solution pH to 2.0 at ambient temperature results in the formation of aggregates in which the VBZ block is now hydrophobic and in the core, stabilized by the hydrophilic NIPAM block. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5864–5871, 2007  相似文献   

13.
A set of dendritic‐linear copolymers, poly(maleic anhydride‐grafted‐3,3′‐dimethyl‐(4‐aminophenylazanediyl)bis(2‐methylpropanoate))‐random‐polystyrene (PMA‐APM‐r‐PS), was successfully prepared by copolymerization of the novel dendritic macromonomer, 4‐(4‐(bis(3‐(4‐(bis(3‐methoxy‐2‐methyl‐3‐oxopropyl)amino)phenylamino)‐2‐methyl‐3‐oxopropyl)amino)phenylamino)‐4‐oxobut‐2‐enoic acid (MA‐APM), with styrene monomer. The dendritic MA‐APM macromonomer dendron 3,3′‐dimethyl‐(4‐aminophenylazanediyl)bis(2‐methylpropanoate) (APM) was then grafted by using the divergent growth method. FTIR, 1H NMR, and 13C NMR spectra were used to identify the structures of the dendron, the dendritic macromonomer, and the dendritic‐linear PMA‐APM‐r‐PS copolymer. Furthermore, microporous dendritic‐linear PMA‐APM‐r‐PS copolymer films were prepared by using solvent‐induced phase separation at room temperature. We investigated the phase separation behavior and morphological structures of the dendritic‐linear copolymer film as functions of dendritic GMA‐HPAM segments in the content using SEM. Self‐assembly of the dendritic‐linear PMA‐APM‐r‐PS copolymer in the MG2‐X system, which represented the second generation dendron containing X wt % of the dendritic MA‐APM segment, resulted in submicron phase segregation. Interestingly, the submicron phase segregation morphology of the MG2–43 sample presented a uniform size distribution of ordered‐array structures. The results of this study demonstrate that controlling the appropriate macromonomer content via the grafting of a three‐dimensional structure results in a self‐assembly process that is capable of providing an ordered‐array microporous morphology in a polymer film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3290–3301, 2010  相似文献   

14.
Two series of amphiphiles composed of hydrophilic poly(amidoamine) dendrons (from the first to the third generation) as the shell and hydrophobic aromatic chromophores (3,6‐di(maleimidyl)‐9‐phenyl carbazole and 9‐(4′‐maleimidyl phenyl)‐3‐maleimidyl carbazole) as the central scaffold were synthesized. The effect of dendritic architecture on the photophysical properties and the self‐assembly behavior of these amphiphiles were studied by UV–vis absorption spectroscopy, fluorescence spectroscopy, and transmission electron microscopy (TEM) measurements. Both the generation of dendritic shell and the location of dendrons at the chromophoric scaffold had great effect on the photophysical properties of these amphiphiles. In addition, different spherical aggregates were formed from these amphiphiles in the aqueous solution at different concentrations. Because of the combined effects of steric hindrance and architecture of dendritic shells, the amphiphiles from G2 dendron with central chromophore self‐organized into ordered aggregates more readily than that from G1 and G3. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4584–4593, 2008  相似文献   

15.
Codendronized polymers pendent with Fréchet‐type poly(benzyl ether) dendron and polyester dendron alternating structure have been produced by combining macromonomer and graft‐from approach. Alternating copolymerization of the styryl dendrons of three generations and N‐(2‐hydroxyethyl)maleimide was used to prepare the polymer backbone bearing the first kind of dendritic wedges, then polyester dendrons were grown up from the pendant hydroxy groups through iterative esterification and deprotection reactions. Then, a kind of codendronized polymer bearing different dendritic wedges with an alternating structure was thus obtained. Since the pendent dendrons were different and each of them was well‐defined, such codendronized polymer can be a multicompartment wormlike molecule. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3994–4001, 2007  相似文献   

16.
First‐generation dendritic macromonomers with a methacryloyl end group on one side, long alkyl chains on the other side, and a biuret system with two urethane groups in the core have been synthesized. The synthesis comprises three steps with hexamethylene diisocyanate uretdione as the starting material. The branching points were introduced via biuret groups and the prepared macromonomers were polymerized by free and controlled radical polymerization. Depending on the reaction conditions linear dendronized polymers as well as branched dendronized polymers and microgels with long alkyl chains were obtained. Scanning force microscopy was used to visualize high molecular weight molecules spincoated on highly oriented pyrolytic graphite. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 614–628, 2007  相似文献   

17.
Five polymeric architectures with a systematic increase in architectural complexity were synthesized by “click” reactions from a toolbox of functional linear polymers and small molecule linkers. The amphiphilic architectures ranged from a simple 3‐miktoarm star block copolymer to the more complex third generation dendrimer‐like block copolymer, consisting of polystyrene (PSTY) and polyacrylic acid (PAA). Micellization of these architectures in water at a pH of 7 under identical ionic strength gave spherical micelles ranging in size from 9 to 30 nm. Subsequent calculations of the PSTY core density, average surface area per PAA arm on the corona‐core interface, and the relative stretching of the PAA arms provided insights into the effect of architecture on the self‐assembly processes. A particular trend was observed that with increased architectural complexity the hydrodynamic diameter, radius of the core in the dry state and the aggregation number also increased with the exception of the third generation dendrimer. On the basis of these observations, we postulate that thermodynamic factors controlling self‐assembly were the entropic penalty of forming PSTY loops in the core counterbalanced by the reduction in repulsive forces through chain stretching. This results in a greater number of aggregating unimers and consequently larger micelle sizes. The junction points within the architecture also play an important role in controlling the self‐assembly process. The G3 dendrimer showed results contradictory to the aforementioned trend. We believe that the self‐assembly process of this architecture was dominated by the increased attractive forces due to stretching of the PSTY core chains to form a more compact core. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6292–6303, 2009  相似文献   

18.
A novel amphiphilic thermosensitive star copolymer with a hydrophobic hyperbranched poly (3‐ethyl‐3‐(hydroxymethyl)oxetane) (HBPO) core and many hydrophilic poly(2‐(dimethylamino) ethyl methacrylate) (PDMAEMA) arms was synthesized and used as the precursor for the aqueous solution self‐assembly. All the copolymers directly aggregated into core–shell unimolecular micelles (around 10 nm) and size‐controllable large multimolecular micelles (around 100 nm) in water at room temperature, according to pyrene probe fluorescence spectrometry and 1H NMR, TEM, and DLS measurements. The star copolymers also underwent sharp, thermosensitive phase transitions at a lower critical solution temperature (LCST), which were proved to be originated from the secondary aggregation of the large micelles driven by increasing hydrophobic interaction due to the dehydration of PDMAEMA shells on heating. A quantitative variable temperature NMR analysis method was designed by using potassium hydrogen phthalate as an external standard and displayed great potential to evaluate the LCST transition at the molecular level. The drug loading and temperature‐dependent release properties of HBPO‐star‐PDMAEMA micelles were also investigated by using indomethacin as a model drug. The indomethacin‐loaded micelles displayed a rapid drug release at a temperature around LCST. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 668–681, 2008  相似文献   

19.
A staff‐type dendritic carbosilane was synthesized with the siloxane polymer Me3SiO? [MeSi(H)O]n? SiMe3 as the core. Through hydrosilation and alcoholysis, the polymeric core grew to the second generation, which contained three, six, and nine allyloxy end groups on each siloxane unit backbone, respectively. The reaction of the monofunctionalized second‐parent generation, which had three Si? Cl groups on the peripheral layer of the unit backbone, with allylalcohol, cholesterol, 8‐hydroxyquinoline, 5‐(2‐hydroxyl)‐4‐methylthiazole, 4‐pyridinepropanol, and 4‐pyridinealdoxime in the presence of 1,1,2,2‐tetramethyethylenediamine, produced end‐functionalized, staff‐type dendrimers. The characterization of the dendritic polymers was carried out with NMR spectroscopy and gel permeation chromatography as well as elemental analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 976–982, 2002  相似文献   

20.
Novel p‐type and low bandgap functional dendritic oligothiophenes bearing hole‐transporting carbazole as peripheral substituents and an electron‐withdrawing dicyanovinyl core group, namely, DCT(n)‐DCN, where n = 1 or 2 for solution‐processable photovoltaic (PV) applications have been synthesized. With electron‐donating carbazole surface‐functionalized moieties conjugated with dicyanovinyl core group, the optical bandgap of these functional dendritic oligothiophene thin‐films greatly reduces to 1.74 eV with a strong spectral broadening and a high ionization potential at ~5.5 eV as determined by UV photoelectron spectroscopy. The bulk heterojunction PV cells fabricated from these dendrimers blended with PC71BM as an acceptor showed a power conversion efficiency up to 1.64% with an open circuit voltage of (Voc) = 0.93 V in the annealed device. We have demonstrated that the desirable molecular and PV properties of dendritic oligothiophenes can be obtained/tuned by the incorporation of functional group(s) onto peripheral of the dendron and into the core. In addition, these functional dendritic oligothiophenes show superior functional properties even at low dendritic generation as compared to the unsubstituted higher generation dendritic oligothiophenes as a p‐type, low‐bandgap semiconductor for solution‐processable bulk heterojunction PV cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号