首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a potential-energy surface obtained in part from ab initio calculations, the H + CH3 → CH4 bimolecular rate constant at T = 300 K is determined from a Monte Carlo classical trajectory study. Representing the CH stretching potential with a standard Morse function instead ofthe ab initio curve increases the calculated rate constant by an order of magnitude. The experimental recombination rate constant is intermediate of the rate constants calculated with the Morse and ab initio stretching potentials.Two properties of the H + CH3 α CH4 potential-energy surface which significantly affect the recombination rate constant are the shape of the CH stretching potential and the attenuation of the H3CH bending frequencies. Ab initio calculations with a hierarchy of basis sets and treatment of electron correlation indicate the latter is properly described [13]. The exact shape of the CH stretching potential is not delineated by the ab initio calculations, since the ab initio calculations are not converged for bond lengths of 2.0–3.0 Å [12]. However, the form of this stretching potential deduced from the highest-level ab initio calculations, and fit analytically by eq. (2), is significantly different from a Morse function. The experimental recombination rate constant is intermediate of the rate constants calculated with the Morse and ab initio CH stretching potentials. This indicates that the actual CH potential energy curve lies between the Morse and ab initio curves. This is consistent with the finding that potential energy curves for diatomics are not well described by a Morse function [12].  相似文献   

2.
A direct ab initio dynamics method is used to investigate the hydrogen‐abstraction reaction of H2CO with NCO. The potential energy surface information is obtained at the MP2/6‐311G(d,p) level. More accurate single‐point energy is refined at the G3(MP2)//MP2/6‐311G(d,p) level. Furthermore, the rate constants of reaction H2CO + NCO are evaluated by using the canonical variational transition state theory with small‐curvature tunneling contributions over a wide temperature range of 200–2000 K. The calculated reaction enthalpy and rate constants are in good agreement with the available experimental values. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 394–400, 2009  相似文献   

3.
A direct ab initio dynamics method is used to investigate the hydrogen‐abstraction reaction CH3CHF2+Cl. One transition state is located for α‐H abstraction, and two are identified for β‐H abstraction. The potential‐energy surface (PES) is obtained at the G3(MP2)//MP2/6‐311G(d, p) level. Furthermore, the rate constants of the three channels are evaluated by using canonical variational transition‐state theory (CVT) with small‐curvature tunneling (SCT) contributions over a wide temperature range of 200–2500 K. The dynamic calculations show that the reaction proceeds mainly by α‐H abstraction over the whole temperature range. The calculated rate constants and branching ratios are both in good agreement with the available experimental values.  相似文献   

4.
In the present paper, kinetic isotope effects of the title reaction are studied with canonical variational transition state theory on the modified Wang Bowman (MWB) potential energy surface (PES) (Chem Phys Lett 2005, 409, 249) and the ab initio calculations at the quadratic configuration interaction (QCISD (T, full))/aug‐cc‐pVTZ//QCISD (full)/cc‐pVTZ level. The calculated rate constants for the isotopic variants of this title reaction on the MWB PES have good agreement with those of the present ab initio calculations over the temperature range of 20–5000 K for the forward reactions and 800–5000 K for the reverse reactions, respectively. In particular, the forward rate constants for the title reaction and its isotopically substituted reactions have negative temperature dependences at about 40 K. Rate expressions are presented for all the studied reactions. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 289–298, 2010  相似文献   

5.
The unimolecular decomposition reaction of CF3CCl2O radical has been investigated using theoretical methods. Two most important channels of decomposition occurring via C–C bond scission and Cl elimination have been considered during the present investigation. Ab initio quantum mechanical calculations are performed to get optimized structure and vibrational frequencies at DFT and MP2 levels of theory. Energetics are further refined by the application of a modified Gaussian-2 method, G2M(CC,MP2). The thermal rate constants for the decomposition reactions involved are evaluated using Canonical Transition State Theory (CTST) utilizing the ab initio data. Rate constants for C–C bond scission and Cl elimination are found to be 6.7 × 106 and 1.1 × 108 s?1, respectively, at 298 K and 1 atm pressure with an energy barrier of 8.6 and 6.5 kcal/mol, respectively. These values suggest that Cl elimination is the dominant process during the decomposition of the CF3CCl2O radical. Transition states are searched on the potential energy surface of the decomposition reactions involved and are characterized by the existence of only one imaginary frequency (NIMAG = 1) during frequency calculation. The existence of transition states on the corresponding potential energy surface is further ascertained by performing intrinsic reaction coordinate (IRC) calculation.  相似文献   

6.
Ab initio electronic structure methods have reached a satisfactory accuracy for the calculation of static properties, but remain too expensive for quantum dynamical calculations. Recently, an efficient semiclassical method was proposed to evaluate the accuracy of quantum dynamics on an approximate potential without having to perform the expensive quantum dynamics on the accurate potential. Here, this method is applied for the first time to evaluate the accuracy of quantum dynamics on an approximate analytical or interpolated potential in comparison to the quantum dynamics on an accurate potential obtained by an ab initio electronic structure method. Specifically, the vibrational dynamics of H2 on a Morse potential is compared with that on the full CI potential, and the photodissociation dynamics of CO2 on a LEPS potential with that on the excited 1Π surface computed at the EOM‐CCSD/aug‐cc‐pVDZ level of theory. Finally, the effect of discretization of a potential energy surface on the quantum dynamics is evaluated. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110:2426–2435, 2010  相似文献   

7.
We report variational transition‐state theory calculations for the OH + O3→ HO2 + O2 reaction based on the recently reported double many‐body expansion potential energy surface for ground‐state HO4 [Chem Phys Lett 2000, 331, 474]. The barrier height of 1.884 kcal mol?1 is comparable to the value of 1.77–2.0 kcal mol?1 suggested by experimental measurements, both much smaller than the value of 2.16–5.11 kcal mol?1 predicted by previous ab initio calculations. The calculated rate constant shows good agreement with available experimental results and a previous theoretical dynamics prediction, thus implying that the previous ab initio calculations will significantly underestimate the rate constant. Variational and tunneling effects are found to be negligible over the temperature range 100–2000 K. The O1? O2 bond is shown to be spectator like during the reactive process, which confirms a previous theoretical dynamics prediction. © 2007 Wiley Periodicals, Inc. 39: 148–153, 2007  相似文献   

8.
The fluorine atom’s reaction with silane molecule (SiH4) is investigated in this work. Two reaction channels which form SiH3+HF and SiH3F+H are discussed in the microscopic level. The analyses of transition states show that the SiH3+HF channel proceeds through a direct hydrogen abstract mechanism and the SiH3F+H channel could take place via the substitution mechanism. The energetic information of the potential energy surface has been obtained using high-level ab initio molecular orbital theory. A dual-level direct dynamics method is employed to calculate the rate constants of the title reaction. The rate constants of the hydrogen abstraction channel are much larger than the substitution channel. The calculated rate constants are in best agreement with available experimental result.  相似文献   

9.
The title reaction, a key elementary process involved in the chemistry of molecular clouds, has been theoretically studied over the 5–600 K temperature range. Rate constants calculations have been carried out using the full version of the statistical adiabatic channel model in conjunction with a potential energy surface that has been derived from recent ab initio quantum chemical data. By using various switching functions, the influence of the attenuation of the bound-complex bending frequency upon N? OH bond elongation on the temperature dependence of the reaction was investigated. The rate constants exhibit a slightly positive temperature dependence with a calculated rate constant value at 300 K in very good agreement with the measured value. A comparison with the available experimental data between 250 and 515 K suggests that recrossing trajectories might occur with increasing importance as the temperature increases. However, the nonstatistical recrossing effects are expected to be of minor importance at interstellar temperatures such that the rate constants over the 5–200 K temperature range are given by k = 8.41 × 10?12 T+0.30 cm3 molecule?1 s?1. The rate constant calculated at 10 K is consistent with that derived in the astrochemical modeling of the L134N dark cloud. Rate constants for individual quantum states are also presented. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
The hydrogen abstraction reaction of Cl atoms with CF3CH2Cl (HCFC‐133a) is investigated by using density function theory and ab initio approach, and the rate constants are calculated by using the dual‐level direct dynamics method. Optimized geometries and frequencies of reactants, transition state, and products are computed at the B3LYP/6‐311+G(2d,2p) level. To refine the energetic information along the minimum energy path, single‐point energy calculations are carried out at the G3(MP2) level of theory. The interpolated single‐point energy method is employed to correct the energy profiles for the title reaction. The rate constants are evaluated by using the canonical variational transition state theory with a small‐curvature tunneling correction over a wide range of temperature, 200–2000 K. The variational effect for the reaction is moderate at low temperatures and very small at high temperatures. However, the tunneling correction has an important contribution in the lower temperature range. The agreement between calculated rate constants and available experimental values is good at lower temperatures but diverges significantly at higher temperatures. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 661–667, 2012  相似文献   

11.
The helical region of the potential energy surface of blocked α-aminoisobutyric acid (Aib) dipeptide has been studied by using ab initio and semiempirical quantum mechanical methods, as well as force-field-derived methods. Depending on the method, an α-helix or a 310-helix is found to be the energy minimum. The conformations obtained from computations performed at the ab initio quantum mechanical level, as well as by using the AMBER force field, are in excellent agreement with X-ray data. Semiempirical results display some important differences with regard to experimental data. On the other hand, the CVFF force field predicts no energy minimum in the helical region of the Aib potential energy surface. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
A new global potential energy surface is reported for the ground state ((4)A(")) of the reaction H((2)S) + NH(X(3)Σ(-)) → N((4)S) + H(2) from a set of accurate ab initio data, which were computed using the multi-reference configuration interaction with a basis set of aug-cc-pV5Z. The many-body expansion and neural network methods have been used to construct the new potential energy surface. The topographical features of the new global potential energy surface are presented. The predicted barrier height is lower than previous theoretical estimates and the heat of reaction with zero-point energy is closer to experimental results. The quantum reactive scattering dynamics calculation was carried out over a range of collision energies (0-1.0 eV) on the new potential energy surface. The reaction probabilities, integral cross-section, and rate constants for the title reaction were calculated. The calculated rate constants are in excellent agreement with the available experimental results.  相似文献   

13.
The potential energy surface (PES) for the CF3CFHO2+HO2 reaction has been theoretically investigated using the DFT [B3LYP/6‐311G(d,p)] and B3LYP/6‐311++G(3df,3pd)//B3LYP/6‐311G(d,p) levels of theory. Both singlet and triplet PESs are investigated. The reaction mechanism on the triplet surface is simple. It is revealed that the formation of CF3CFHOOH+3O2 is the dominant channel on the triplet surface. On the basis of the ab initio data, the total rate constants for the reaction CF3CFHO2+HO2 in the T = 210–500 K range have been computed using conventional transition state theory with Wigner's tunneling correction and have been fitted by a rate constant expression as k = 1.04 ×10?12(cm3 molecule?1 s?1) exp (700.33/T). Calculated transition state rate constants with Wigner's tunneling correction for the reaction CF3CFHO2+HO2 are in good agreement with the available experimental values. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

14.
Accurate full-dimensional quantum mechanical thermal rate constant values have been calculated for the F+H2→HF+H reaction on the Stark–Werner ab initio potential energy surface. These calculations are based on a flux correlation functions and employ a rigorous statistical sampling scheme to account for the overall rotation and the MCTDH scheme for the wave packet propagation. Our results shed some light on discrepancies on the thermal rate found for previous flux correlation based calculations with respect to accurate reactive scattering results. The resonance pattern of the all-J cumulative reaction probability is analyzed in terms of the partial wave contributions.  相似文献   

15.
16.
Three-dimensional time-dependent quantum wave packet calculation for the O((1)D)+HBr reaction has been carried out using an accurate ab initio global potential energy surface [K. A. Peterson, J. Chem. Phys. 113, 4598 (2000)]. The calculations show that the initial state-selected reaction probabilities are dominated by resonance structures, and the lifetime of the resonance is generally in the subpicosecond time scale. The energy dependence of the reaction cross section is computed, which manifests still resonance structures, and is a decreasing function of the translational energy. The thermal rate constants are also computed, which are nearly independent on the temperature. The calculation results are discussed and compared to similar reaction with deep well.  相似文献   

17.
The photoelectron spectra (`transition state spectra') of FH2 generated experimentally from para- and normal-H2 are simulated on new ab initio potential energy surfaces using standard quantum time-dependent wavepacket techniques, and compared directly to experimental spectra. Agreement between theory and experiment is improved compared to earlier simulations. Two factors are shown to contribute to this success: (1) the anharmonicity of the exact vibrational wavefunctions on a new ab initio surface for the anion and (2) a new spin–orbit correction applied to the ab initio surface for neutral FH2. Possible reasons for the small remaining discrepancies are investigated and discussed. Finally, predictions are given for spectra obtainable in future high-resolution experiments of this system.  相似文献   

18.
The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide‐and‐conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction‐type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre‐exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude).  相似文献   

19.
Combined ab initio quantum mechanical and molecular mechanical calculations have been widely used for modeling chemical reactions in complex systems such as enzymes, with most applications being based on the determination of a minimum energy path connecting the reactant through the transition state to the product in the enzyme environment. However, statistical mechanics sampling and reaction dynamics calculations with a combined ab initio quantum mechanical (QM) and molecular mechanical (MM) potential are still not feasible because of the computational costs associated mainly with the ab initio quantum mechanical calculations for the QM subsystem. To address this issue, a reaction path potential energy surface is developed here for statistical mechanics and dynamics simulation of chemical reactions in enzymes and other complex systems. The reaction path potential follows the ideas from the reaction path Hamiltonian of Miller, Handy and Adams for gas phase chemical reactions but is designed specifically for large systems that are described with combined ab initio quantum mechanical and molecular mechanical methods. The reaction path potential is an analytical energy expression of the combined quantum mechanical and molecular mechanical potential energy along the minimum energy path. An expansion around the minimum energy path is made in both the nuclear and the electronic degrees of freedom for the QM subsystem internal energy, while the energy of the subsystem described with MM remains unchanged from that in the combined quantum mechanical and molecular mechanical expression and the electrostatic interaction between the QM and MM subsystems is described as the interaction of the MM charges with the QM charges. The QM charges are polarizable in response to the changes in both the MM and the QM degrees of freedom through a new response kernel developed in the present work. The input data for constructing the reaction path potential are energies, vibrational frequencies, and electron density response properties of the QM subsystem along the minimum energy path, all of which can be obtained from the combined quantum mechanical and molecular mechanical calculations. Once constructed, it costs much less for its evaluation. Thus, the reaction path potential provides a potential energy surface for rigorous statistical mechanics and reaction dynamics calculations of complex systems. As an example, the method is applied to the statistical mechanical calculations for the potential of mean force of the chemical reaction in triosephosphate isomerase.  相似文献   

20.
Using an exact Chebyshev wave packet method, initial state-specified (upsilon(i)=0, j(i)=0,2) integral cross-sections and rate constants are obtained for the title reaction on the latest ab initio potential energy surface. Reaction probabilities up to J=29 are dependent on the reactant rotation and show mild oscillations superimposed on a broad background. Due to a barrier in the entrance channel, the cross sections increase with energy with clear thresholds and the rate constants vary with temperature in the Arrhenius form. The calculated canonical rate constant is in good agreement with the experimental measurements. Our results also indicate that the quasiclassical trajectory method underestimates the rate due to the neglect of tunneling, while the quantum statistical approach overestimates because of the short lifetime of the reaction intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号