首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rb7[SiO4][VO4]: an Ortho‐Silicate‐Vanadate(V) Rb7[SiO4][VO4] has been obtained from a redox reaction between CdO and vanadium metal in the presence of Rb2O and SiO2 at 600 °C in an Ag container as yellow‐greenish transparent single crystals. The crystal structure determination (IPDS data: P21/c, a = 637.6(1) pm, b = 1039.7(1) pm, c = 2076.8(4) pm, β = 93.21(2)°, Z = 4, wR2 = 0.1319) reveals the presence of isolated complex anions, [SiO4]4— and [VO4]3—.  相似文献   

2.
Rb6LiPr11Cl16[SeO3]12: A Chloride‐Derivatized Rubidium Lithium Praseodymium(III) Oxoselenate(IV) Transparent green square platelets with often truncated edges and corners of Rb6LiPr11Cl16[SeO3]12 were obtained by the reaction of elemental praseodymium, praseodymium(III,IV) oxide and selenium dioxide with an eutectic LiCl–RbCl flux at 500 °C in evacuated silica ampoules. A single crystal of the moisture and air insensitive compound was characterized by X‐ray diffraction single‐crystal structure analysis. Rb6LiPr11Cl16[SeO3]12 crystallizes tetragonally in the space group I4/mcm (no. 140; a = 1590.58(6) pm, c = 2478.97(9) pm, c/a = 1.559; Z = 4). The crystal structure is characterized by two types of layers parallel to the (001) plane following the sequence 121′2′1. Cl? anions form cubes around the Rb+ cations (Rb1 and Rb2; CN = 8; d(Rb+?Cl?) = 331 – 366 pm) within the first layer. One quarter of the possible places for Rb+ cations within this CsCl‐type kind of arrangement is not occupied, however the Cl? anions of these vacancies are connected to Pr3+ cations (Pr4) above and below instead, forming square antiprisms of [(Pr4)O4Cl4]9? units (d(Pr4?O) = 247–249 pm; d(Pr4?Cl) = 284–297 pm) that work as links between layer 1 and 2. Central cations of the second layer consist of Li+ and Pr3+. While the Li+ cations are surrounded by eight O2? anions (d(Li?O5) = 251 pm) in the shape of cubes again, the Pr3+ cations are likewisely coordinated by eight O2? anions as square antiprisms (for Pr1, d(Pr1?O2) = 242 pm) and by ten O2? anions (for Pr2 and Pr3), respectively. The latter form tetracapped trigonal antiprisms (Pr2, d(Pr2?O) = 251–253 pm and 4 × 262 pm) or bicapped distorted cubes (Pr3, d(Pr3?O) = 245–259 pm and 2 × 279 pm). The non‐binding electron pairs (“lone pairs”) at the two crystallographically different Ψ1‐tetrahedral [SeO3]2? anions (d(Se4+?O2?) = 169–173 pm) are directing towards the empty cavities between the layer‐connecting [(Pr4)O4Cl4]9? units.  相似文献   

3.
Synthesis and Structure of RbHfF5, Rb2Zr3F12O and Rb2Hf3F12O — two Oxydefluorides with Central Trigonal‐plane [M3O] Group Colorless RbHfF5 crystallizes isotypic with (NH4)ZrF5 and TlHfF5 monoclinic, space group P21/c ‐ C2h (No. 14) with a = 776.6, b = 789.6, c = 789.8 pm, and β = 120.52°. Also colorless Rb2Zr3F12O crystallizes trigonal, space group R3¯m — D3d (No. 166), with a = 771.9 and c = 2963.0 pm, isotypic is Rb2Hf3F12O with a = 769.2 pm and c = 2986.1 pm. Both compounds are isotypic with Tl2Zr3F12O.  相似文献   

4.
New Alkaline Halogenopalladates(II) with Incorporated Iodine Dumb‐Bells — Crystal Structures, Phase‐Transitions, and Vibrational Spectra Dark‐reddish crystals of Cs2[PdBr4]I2, Cs2[PdCl4]I2, and black crystals of Rb2[PdBr4]I2 were obtained by solvothermal reaction from diluted hydrohalogenic acids and crystallize in space group I4/mmm with Z = 2. Unitcell parameters for Cs2[PdBr4]I2 are a = 848.96(1) pm, c = 908.53(2) pm; Cs2[PdCl4]I2 a = 814.65(2) pm, c = 899.10(1) pm and for Rb2[PdBr4]I2 a = 840.9(1) pm, c = 902.3(1) pm. The compounds contain isolated [PdX4] building units (X = Cl, Br) which are supplemented by embedded iodine dumb‐bells. Cs2[PdBr4]I2 and Cs2[PdCl4]I2 show reversible pressure induced phase transitions above 78 kbar and 199 kbar, respectively.  相似文献   

5.
On Fluorides of Univalent and Divalent Mercury For the first time Rb2HgF4 and Cs2HgF4, both colourless, have been obtained. From single crystal investigations they crystallize tetragonal in the K2NiF4-type of structure, space group I4/mrnm-D4h17 (No. 139) with a = 455.6 pm, c = 1375.7 pm, Z = 2 for Rb2HgF4 and a = 462.5 pm, c = 1451.8 pm, Z = 2 for Cs2HgF4. The determination of the crystal structure of Hg2F2 confirmed the unit cell [1] with a = 367.00(4) pm, c = 1090.1(2) pm, Z = 2 space group I4/mrnm-D4h17 (No. 139).  相似文献   

6.
The Oxoantimonates(III) Rb2Sb8O13 and Cs8Sb22O37: New Framework and Layer Structures with ‘Lone‐Pair’ Cations The oxoantimonates(III) Rb2Sb8O13 and Cs8Sb22O37 were synthezised from Sb2O3, the elemental alkali metals (A) and the hyperoxides (AO2) at 500 °C. The crystal structures of Rb2Sb8O13 (monoclinic, P21/m, a=743.7(12)pm, b=1724(3)pm, c=1380(2)pm, β=90.44(4) °, Z=4) and Cs8Sb22O37 (monoclinic, Cc, a=1299.93(11)pm, b=719.87(6)pm, c=3089.9(3)pm, β=96.00(2) °, Z=2) exhibit complex layer (Rb) and framework oxoantimonate ions (Cs), with the SbIII cation, due to its stereochemically active ‘lone‐pair’, in ψ‐tetrahedral (CN=3) to ψ‐trigonal‐bipyramidal (CN=4) coordination by O.  相似文献   

7.
On Unexpected Structural Relations: The New Orthotitanate Rb3Na[TiO4] [1] The new oxide Rb3Na[TiO4], platelike colourless crystals, was obtained by heating a well grounded mixture of the binary oxides in Ni-tubes. Therewith the oxides RbO0.52, NaO1.03, Ti2O3 (Rb:Na:Ti = 2.8:2.5:1.0) were heated for 26 d at 1000°C. Rb3Na[TiO4] (monoclinic, P21/c) is “isostructural” with Rb3Na[PbO4] [2] (lattice constants: a = 1076.3(3) pm, b = 638.8(4) pm, c = 1088.9(7) pm, β = 112.83(12)°; four-circle diffractometer data, Z = 4). The structure was determinated by using four-circle diffractometer data (Siemens AED2, 6683 I0(hkl), MoKα , R = 6.2%, Rw = 3.8%, additional data see text). The Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR) and the Charge Distribution in Solids are calculated and discussed.  相似文献   

8.
Rb2Co3(H2O)2[B4P6O24(OH)2]: A Borophosphate with ‐Tetrahedral Anionic Partial Structure and Trimers of Octahedra (Co O12(H2O)2) Rb2Co3(H2O)2[B4P6O24(OH)2] is formed under mild hydrothermal conditions (T = 165 °C) from mixtures of RbOH(aq), CoCl2, H3BO3, and H3PO4 (molar ratio 1 : 1 : 1 : 2). The crystal structure (orthorhombic system) was solved by X‐ray single crystal methods (space group Pbca, No. 61; R‐values (all data): R1 = 0.0699, wR2 = 0.0878): a = 950.1(1) pm, b = 1227.2(2) pm, c = 2007.4(2) pm; Z = 4. The anionic partial structure consists of tetrahedral [B4P6O24(OH)28–] layers, which contain three‐ and nine‐membered rings. CoII is octahedrally coordinated by oxygen and oxygen and H2O ligands, respectively (coordination octahedra CoO6 and CoO4(H2O)2). Three adjacent coordination octahedra are condensed via common edges to form trimeric units (CoO12(H2O)2). The oxidation state +2 of cobalt was confirmed by magnetic measurements. The octahedral trimers are quasi‐isolated. No long‐range magnetic ordering occurs down to 2 K. Rb+ is disordered over three crystallographically independent sites within channels of the structure running parallel [010]; the coordination sphere of Rb+ is formed by nine oxygen species of the tetrahedral layers, one OH group and one H2O molecule.  相似文献   

9.
A “Lithosilicate” with Columnar Units: RbLi5{Li[SiO4]}2 In order to prepare RbLi3[SiO4] single crystals of RbLi5{Li[SiO4]}2 have been obtained for the first time by heating of a well ground mixture of the binary oxides RbO0.68, LiO0.5 and SiO2 [Rb:Li:Si = 1.1:3.0:1.0; 600°C; 21 d] in tightly closed Ni tubes. The new “lithosilicate” crystallizes monoclinic (space group C2/m with a = 1563.1(2) pm, b = 635.4(1) pm, c = 776.3(1) pm, β = 90.53(1)°, Guinier-Simon powder data). The crystal structure was determined by four-cycle diffractometer data [Philips PW 1100, 1237 from 1609 Io(hkl), Z = 4, R = 9.2%, Rw = 8.3%], parameters see text. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

10.
Synthesis, Crystal Structures, and Absorption Spectra of the New “Cupriosilicates”: K6[CuSi2O8] and Rb4[CuSi2O7] K6[CuSi2O8] and Rb4[CuSi2O7] were obtained by annealing intimate mixtures of K2O and Rb2O, respectively, CuO and SiO2 in sealed Ag cylinders at 500°C as transparent greenish-blue single crystals. The structure solution (IPDS-data Mo Kα; K6[CuSi2O8]: 1292 F2(hkl), R1 = 0.059; wR2 = 0.103 and Rb4[CuSi2O7]: 763 F2(hkl), R1 = 0.049; wR2 = 0.114) confirms the space group P1 for both compounds. K6[CuSi2O8]: a = 619.4(2); b = 665.5(2); c = 753.0(2) pm; α = 83.66(3); β = 87.71(3); γ = 70.19(3)°; Z = 1. Rb4[CuSi2O7]: a = 631.9(9); b = 707.5(10); c = 715.2(6) pm; α = 114.2(1); β = 100.7(1); γ = 107.9(1)°; Z = 1. The Madelung Part of the Lattice Energy, MAPLE, Effective Coordination Numbers, ECoN, these calculated via Mean Effective Ionic Radii, MEFIR, are given. The absorption spectra of K6[CuSi2O8] and Rb4[CuSi2O7] are discussed in terms of the Angular Overlap Model, AOM.  相似文献   

11.
What does Solid State Mean?. New Molecular Aspects on the Example of Rb2[TiO3] [1], [2] Rb2TiO3 [3], parent type of the oxides K2CoO3, Rb2CoO3 and Cs2CoO3 [4], colourless crystals, needles, was newly obtained by heating a well grounded mixture of the binary oxides RbO0.98, RbO0.52, Ti2O3 (molar ratio = 2.4:6.2:1.0) 41 d at 780°C in Ni-Tubes. The first structure determination by using four-circle diffractometer data (Siemens AED2, 5366 Io(hkl), MoKα ) leads to the residual-values R = 7.9% and Rw = 3.7%. Lattice constants (orthorhombic, Cmca, Z = 8, Guinier-Simon-data, CuKα1): a = 596.5(1) pm, b = 1185.2(1) pm, c = 1326.6(1) pm (additional data see text). The structure determination 1974 by filmdata is confirmed. The Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR) and the Charge Distribution in Solids (CHARDI) are calculated and discussed.  相似文献   

12.
A Sodium‐Oxocobaltate(II)‐Hydroxide: Na5[CoO3]OH ≡ Na10[CoO3]{[CoO3](OH)2} Na10[CoO3]{[CoO3](OH)2} has been obtained from a redox reaction between cobalt metal and CdO in the presence of NaOH and Na2O at 600 °C (21 d) as red single crystals. The structure has been determined from single crystal data (IPDS‐data, Pnma, Z = 4, a = 988.5(1) pm, b = 1013.9(2) pm, c = 1186.3(2) pm, wR2 = 0.079). Furthermore IR data and aspects of the Madelung part of the lattice energy are presented.  相似文献   

13.
On ?Lithovanadates”?: Rb2[LiVO4] and Cs2[LiVO4] By heating of well ground mixtures of the binary oxides [A2O, Li2O, V2O5, A : Li: V = 2.2 : 1.1 : 1.0 (A = Rb, Cs); Ni-tube, 750° 25 d] we obtained Rb2[LiVO4] and Cs2[LiVO4] colourless, orthorhombic single crystals. We found a new type of ?Lithovanadate”?-structure: space group Cmc21; a = 587.9(1), b = 1170.1(1), c = 793.3(1) pm, Z = 4 (A = Rb) bzw. a = 610.5(1), b = 1222.6(3), c = 815.5(2) pm, Z = 4 (A = Cs). The structure was determined by four-circle diffractometer data [MoKα -radiation; 997 from 1157 I0(hkl), R = 7.75%, Rw = 5.54% (A = Rb); 686 from 686 I0(hkl), R = 6.97%, Rw = 4.20% (A = Cs)] parameters see text. The Madelung part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

14.
The complexes cis‐[SnCl4(H2O)2]·2H2O ( 1 ), [Sn2Cl6(OH)2(H2O)2]·4H2O ( 3 ), and [HL][SnCl5(H2O)]·2.5H2O ( 4 ) were isolated from a CH2Cl2 solution of equimolar amounts of SnCl4 and the ligand L (L=3‐acetyl‐5‐benzyl‐1‐phenyl‐4, 5‐dihydro‐1, 2, 4‐triazine‐6‐one oxime, C18H18N4O2) in the presence of moisture. 1 crystallizes in the monoclinic space group Cc with a = 2402.5(1) pm, b = 672.80(4) pm, c = 1162.93(6) pm, β = 93.787(6)° and Z = 8. 4 was found to crystallize monoclinic in the space group P21, with lattice parameters a = 967.38(5) pm, b = 1101.03(6) pm, c = 1258.11(6) pm, β = 98.826(6)° and Z = 2. The cell data for the reinvestigated structures are: [SnCl4(H2O)2]·3H2O ( 2 ): a = 1227.0(2) pm, b = 994.8(1) pm, c = 864.0(1) pm, β = 103.86(1)°, with space group C2/c and Z = 4; 3 : a = 961.54(16) pm, b = 646.29(7) pm, c = 1248.25(20) pm, β = 92.75(1)°, space group P21/c and Z = 4.  相似文献   

15.
On Complex Fluorides of Divalent Palladium For the first time single crystals of the new compounds RbPdPdF5, KPdPdF5, and K2CsPdF5 have been obtained. Orange brown RbPdPdF5 crystallizes orthorhombic, space group Imma–D2h28 (No. 74) with a = 633.6(1) pm, b = 765.5.(1) pm, c = 1067.5(1) pm and Z = 4 and is isotypic with CsPdPdF5 [1]. Structure related KPdPdF5 (also orange brown) crystallizes orthorhombic too, but in space group Pnma–D2h16 (No. 62) with a 614.12(9) pm, b = 748.7(1) pm, c = 1065.0(2) pm and Z = 4. K2CsPdF5, light yellow, crystallizes tetragonal with a = 736.3(1) pm, c = 628.0(1) pm, Z = 2, and is isotypic with Rb2CsPdF5 (space group P4/mbm? D4h5 Nr. 127), an ordered structure variant of the Rb3PdF5-Type [1].  相似文献   

16.
Pb2(OH)2[p‐O2C‐C6H4‐CO2]: Synthesis and Crystal Structure Single crystals of Pb2(OH)2[p‐O2C‐C6H4‐CO2] ( 1 ) were obtained by hydrothermal reaction of terephthalic acid and PbCO3 at 180 °C (10 days). 1 crystallizes in the monoclinic space group P21/c with Z = 2 (a = 1115.6(2) pm, b = 380.10(4) pm, c = 1141.3(2) pm, β = 93.39(1)°, V = 0.4831(1) nm3). The crystal structure is characterized by ladder‐type Pb(OH)3/3 double chains, which are connected to a three‐dimensional framework by terephthalate dianions.  相似文献   

17.
Rubidium und Caesium Compounds with the Isopolyanion [Ta6O19]8– – Synthesis, Crystal Structures, Thermogravimetric and Vibrational Spectrocopic Analysis of the Oxotantalates A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) The compounds A8[Ta6O19] · n H2O (A = Rb, Cs; n = 0, 4, 14) contain the isopoly anion [Ta6O19]8–, which consists of six [TaO6] octahedra connected via corners to form a large octahedron. They transform into each other by reversible hydratation/dehydratation processes, as shown from thermoanalytic measurements (TG/DSC), and show also structural similarities. Cs8[Ta6O19] (tetragonal, I4/m, a = 985.9(1) pm, c = 1403.3(1) pm, Z = 2), the isotypic phases A8[Ta6O19] · 14 H2O (A = Rb/Cs; monoclinic, P21/n, a = 1031.30(6)/1055.4(1) pm, b = 1590.72(9)/1614.9(6) pm, c = 1150.43(6)/1171.4(1) pm, β = 100.060(1)/99.97(2)°, Z = 2) and Rb8[Ta6O19] · 4 H2O (monoclinic, C2/c, a = 1216.9(4) pm, b = 1459.2(5) pm, c = 1414.7(4) pm, β = 90.734(6)°, Z = 4) have been characterised on the basis of single crystal x‐ray data. Furthermore the RAMAN spectra allow a detailled comparison of the hexatantalate ions in the four compounds.  相似文献   

18.
New Alkalioxoarsenates (V). On Rb2Li[AsO4] and Cs2Li[AsO4] By heating of well-grounded mixtures of the binary oxides (A2O, Li2O2, and As2O3; A : Li : As = 2 : 1 : 1; Ni-tube, 550°C, 21 d; A = Rb, Cs) colourless single crystals of Rb2Li[AsO4] and Cs2Li[AsO4] were obtained for the first time. These new orthoarsenates(V) crystalize orthorhombic (space group C mc21? C, No. 36) with Z = 4. As expected they are isotypic with the according orthovanadates(V) [2] A2Li[VO4], A = Rb, Cs. The lattice constants of Rb2Li[AsO4]: a = 582.1(4) pm, b = 1171.1(7) pm, c = 792.4(5) pm and Cs2Li[AsO4]: a = 596.4(2) pm, b = 1223.4(2) pm, c = 819.7(3) pm were taken from Guinier-Simon powder data. The structure was determined by four-circle-diffractometer data [Siemens AED II, MoKα , 6290 I0 (hkl), R = 3.5%, Rw = 3.2% to Rb2Li[AsO4]; 3518 I0 (hkl), R = 2.8%, Rw = 2.6% to Cs2Li[AsO4]; parameters see text]. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, MEFIR, as well as charge distribution CHARDI are calculated and discussed.  相似文献   

19.
Alkaline Molybdotellurates: Preparation and Crystal Structures of Rb6[TeMo6O24] · 10H2O and Rb6[TeMo6O24] · Te(OH)6 · 6H2O Single crystals of Rb6[TeMo6O24] · 10 H2O and Rb6[TeMo6O24] · Te(OH)6 · 6 H2O, respectively, were grown from aqueous solution. Rb6[TeMo6O24] · 10 H2O possesses the space group P1 . The lattice dimensions are a = 963.40(13), b = 972.56(12), c = 1 056.18(13) pm, α = 97.556(10), β = 113.445(9), γ = 102.075(10)°; Z = 1, 2 860 reflections, 215 parameters refined, Rg = 0.0257. The centrosymmetrical [TeMo6O24]6? anions are stacked parallel to [010]. Rb(2) is coordinated with one exception by water molecules only. Folded chains consisting of [TeMo6O24]6? anions and Rb(2) coordination polyhedra which are linked to pairs represent the prominent structural feature. Rb6[TeMo6O24] · Te(OH)6 · 6 H2O crystallizes monoclinically in the space group C2/c with a = 1 886.4(3), b = 1 000.9(1), c = 2 126.5(3) pm, and β = 115.90(1)°; Z = 4, 3 206 reflections, 240 parameters refined, Rg = 0.0333. It is isostructural in high extent with (NH4)6[TeMo6O24] · Te(OH)6 · 7 H2O. Hydrogen bonds between Te(OH)6 molecules and [TeMo6O24]6? anions establish infinite strands. The [TeMo6O24]6? anions gather around Te(OH)6 providing channel-like voids extending parallel to [001].  相似文献   

20.
Alkaline Metal Stannide‐Silicates and ‐Germanates: ‘Double Salts’ with the Zintl Anion [Sn4]4— The crystal structures of the tetrelid tetrelates A12[Sn4]2[GeO4] (A = Rb/Cs: monoclinic, P21/c, a = 1289.1(2) / 1331.72(7), b = 2310.1(4)/ 2393.6(1), c = 1312.6(2)/ 1349.21(7) pm, β = 119.007(3)/ 118.681(1)°, Z = 4, R1 = 0.1049/0.0803) and Cs20[Sn4]2[SiO4]3 (monoclinic, Cc, a = 2331.9(1), b = 1340.1(2), c = 1838.9(2) pm, β= 102.61(3)°, R1 = 0.0763) contain the Zintl anions [Sn4]4— and isolated oxotetrelate ions [MO4]4— (M = Si, Ge). The high temperature form of CsSn crystallizes with the KGe type (cubic, P4¯3n, a = 1444.7(1) pm, R1 = 0.0395).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号