首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
持续指数增长的互联网逐渐带来了信息过载问题,使得推荐系统提供的信息过滤服务尤为重要. 协同过滤是推荐系统领域最为成功的技术,但依然存在数据稀疏性等问题. 社会关系信息能够有效提高推荐系统的预测准确性. 为解决数据稀疏性问题,本文提出了一种利用Logistic函数的社会化矩阵分解推荐算法. 在3组真实数据结合上的实验结果表明,本文提出的算法能够提供更准确的推荐结果,特别是在数据稀疏的情况下,显著缓解了数据稀疏性问题.   相似文献   

2.
针对传统协同过滤推荐方法中用户评分信息稀疏导致推荐准确度不高的问题,提出融合用户信任度的概率矩阵分解推荐算法.该算法综合用户间的联合评分项以及非联合评分项,利用KL散度得到用户信任度排名,使得相似用户间的特征向量更加接近,并在概率矩阵分解过程中维持这种关系.最后在MovieLens 1M和Epinions数据集上采用三...  相似文献   

3.
4.
为提高个性化影视推荐的准确率,提出了一种融合了决策树模型和包含了用户情境信息的矩阵分解算法的混合推荐算法.通过融入了情境偏置的矩阵分解算法,得到初始的影视推荐列表,之后通过分类模型的训练,得出用户在特定情境下对电影类型的偏好.将初始推荐列表根据分类模型得出的用户特定情境下的偏好进行二次筛选,得到最终推荐结果.相较于传统...  相似文献   

5.
基于矩阵分解和聚类提出一种协同过滤推荐算法. 先利用交替最小二乘(ALS)算法进行矩阵分解, 再利用改进的k-均值聚类算法弥补单一ALS算法在后期协同过滤阶段产生的大计算量问题, 解决了由于减小原始矩阵高维度、 高稀疏性带来的推荐准确度较低的问题, 极大提高了计算速度和推荐精度. 实验结果表明, 改进算法在推荐准确性上有明显提高.  相似文献   

6.
现今的推荐算法大多忽略用户偏好和项目属性中的多个特征,而是在单一推荐准则的基础上训练模型进行推荐. 基于多准则的推荐算法通过考虑用户偏好的多个方面,可以为用户行为提供更加准确的预测. 酒店是旅游行业中重要的环节,为了提高旅客体验,实现酒店评分预测,提出了基于矩阵分解与随机森林的多准则推荐算法. 该算法分两步实现,通过矩阵分解训练得出用户对物品在各个准则上的评分特征,然后随机森林学习评分特征预测最终评分. 实验结果显示,相较传统算法,基于矩阵分解与随机森林的多准则推荐算法的准确性和实用价值更高.  相似文献   

7.
针对传统协同过滤算法用户相似度计算准确度低的问题,在推荐系统中引入项目属性信息和项目标签信息,提出融合标签和属性信息的混合推荐算法。首先将用户对项目的评分转化为用户对项目属性值及标签的评分,构建用户-属性值偏好矩阵和用户-标签偏好矩阵,将其作为用户描述文件;然后分别根据用户-属性值偏好矩阵和用户-标签偏好矩阵计算用户之间的相似性,并将结果加权平均,得到每个用户的最近邻居列表;最后根据邻居对项目的评分产生推荐结果。由于项目属性值的数量和主要标签数量远低于项目数量,该算法能有效解决协同过滤算法的数据稀疏性问题,同时也能更直观地描述用户的偏好。而且在构建用户描述文件时,考虑到用户偏好随时间变化的规律,对用户不同时间点的评分赋予不同的权重,权重随着时间推移逐渐增大。实验结果表明,该算法能更准确地预测用户对未评分项的评分,提高推荐的准确度和召回率。  相似文献   

8.
针对传统的协同过滤推荐算法中评分矩阵过于稀疏和算法准确度不高的问题,提出一种融合矩阵分解和XGBoost算法的推荐算法(MFXGB,Matrix Factorization XGBoost),其特点是利用SVD++算法(SVD,Singular Value Decomposition)对用户项目评分矩阵进行填充,避免过多的缺失值对算法精确度的影响,再利用XGBoost(eXtreme Gradient Boosting)算法训练有监督的模型用于预测用户评分.为了克服计算成本过高的困难,提出利用K-均值聚类方法进行特征提取用于训练XGBoost模型.将MFXGB算法应用于MovieLens数据集进行实验分析,结果显示,MFXGB算法的推荐精确度比传统的3种方法分别提高了8.91%、10.18%和11.79%,效果明显优于传统的推荐算法.  相似文献   

9.
现有社会标签推荐技术存在数据稀疏、时间复杂度高以及可解释性低等问题,鉴于此,提出基于概率矩阵分解(PMF)进行潜在特征因子联合分解的标签推荐算法(TagRec-UPMF),它结合用户、资源及标签3方面的潜在特征,联合构建对应的概率形式的潜在特征向量,然后根据它们两两之间的特征向量内积进行线性组合,从而产生Top-N推荐.该算法解决了数据规模大且稀疏情况下的精度问题,算法的线性复杂度使得其可用于大规模数据.实验结果表明,相比于TagRec-CF,PITF,TTD,Tucker,NMF等算法,本文算法既提高了推荐的准确率,又降低了时间损耗.与PITF算法相比较,准确率得到了提高,而处理时间相差不明显;与TTD算法相比较,在准确率相差不明显的情况下,大大降低了时间损耗.因此,本文的TagRec-UPMF算法相比其他算法表现出了一定的优势.  相似文献   

10.
为了提高传统协同过滤推荐算法推荐的准确度,对评分信任和社交信任赋予自适应的权重,结合概率矩阵分解算法,提出一种综合的个性化推荐算法.该算法在Filmtrust数据集上进行验证,并与相关算法进行对比,结果表明所提算法在MAE(mean absolute error)和RMSE(root mean squared error)指标上均得到有效的改进.  相似文献   

11.
在基于关系图约束的推荐方法中,引入用户图(项目图)约束的目的是保持原始的高维用户表征空间(高维项目表征空间)与低维的隐性用户表征空间(隐性项目表征空间)之间用户关系(项目关系)的一致性.不同于传统的基于关系图Laplacian矩阵的一致性约束,本文提出一种基于关系图邻接矩阵逼近的推荐模型,从相似性空间一致性角度进行约束,在保持高维表征空间与低维隐性空间的一致性关系的同时,可以一定程度上避免局部过拟合问题.在EachMovie与MovieLens数据集上的实验结果验证了本文算法的有效性.  相似文献   

12.
为了更好地保留源图像边缘信息、提高抗噪能力,提出一种基于SUSAN和加权非负矩阵分解的图像融合方法.运用SUSAN对像素点进行分类,根据分类结果构建加权矩阵,最后运用加权非负矩阵分解方法实现图像融合.实验证明,该方法能有效地保留边缘信息且抗噪性较好.  相似文献   

13.
为提高非负矩阵分解的收敛速度,在Lee和Seung的倍乘更新算法及改进ILSMU—EUC算法的基础上,通过调整运算顺序,限制不必要的更新方法,提出加速IILSMU-EUC算法。IILSMU-EUC算法是从计算量和内部迭代分析中,对运算耗费量大的矩阵提出限制更新方法,即调整计算顺序,按步骤顺序执行,能够减少计算量及不必要的上百万次的更新。实验结果表明:与原倍乘更新MU算法、梯度映射算法和分层交替最小二乘算法比较,IILSMU-EUC算法误差小、快速收敛性强、提取特征明显,从而验证了改进算法的有效性、稳定性和高效性。  相似文献   

14.
提出了一种新的非负矩阵分解算法(NNMF).通过引入Bergman距离函数定义了非负矩阵分解算法的代价函数,给出了迭代公式,并证明了其收敛性.实验结果表明:在适当的条件下,算法收敛速度较快;解的精确度较高.  相似文献   

15.
基于非负矩阵分解的协同过滤模型在高维稀疏数据的预测和填补上十分有效,该模型具有推荐个性化、有效利用其他相似用户回馈信息的优点,但也存在预测精度较低等不足。针对用户或项目在不同情景下的评分差异性,提出了一种改进的基于潜在因子多样性的非负矩阵分解的协同过滤模型。该模型充分考虑在不同情境下,用户和项目潜在特征矩阵的多样性,在模型的训练中,采用了单元素非负乘法更新规则和交替方向法,保证了目标矩阵的非负性,且提高了模型的收敛率。在真实的工业数据集上的实验结果表明,相比于经典的非负矩阵分解模型,该模型的预测精度有了明显提高。  相似文献   

16.
一种受限非负矩阵分解方法   总被引:6,自引:0,他引:6  
提出一种获取潜在语义的受限非负矩阵分解方法.通过在非负矩阵分解方法的目标函数上增加3个约束条件来定义受限非负矩阵分解方法的目标函数,给出求解受限非负矩阵分解方法目标函数的迭代规则,并证明迭代规则的收敛性.与非负矩阵分解方法相比,受限非负矩阵分解方法能获取尽可能正交的潜在语义.实验表明,受限非负矩阵分解方法在信息检索上的精度优于非负矩阵分解方法.  相似文献   

17.
协同过滤算法研究正面临两大挑战:一是提高推荐系统的质量,尤其是高维稀疏数据系统的推荐质量;二是提高算法的可伸缩性。为了解决该问题,笔者提出了一个基于用户近邻和项目近邻的协同过滤改进算法。为了提高系统在线推荐性能,该算法分2步:1)线下的相似度计算和近邻计算;2)在线预测。通过对N个用户近邻和N个项目近邻的有效结合,该算法在线计算的空间复杂度为O(N)且具有较好的可伸缩性。实验表明,与经典的Pearson协同过滤算法相比,该算法不仅提高了推荐性能,而且也适用于高维稀疏数据系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号