首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel polyamides with pendent naphthylamine units having inherent viscosities of 0.15–1.02 dL/g were prepared via direct phosphorylation polycondensation from various diamines and a naphthylamine‐based aromatic dicarboxylic acid, 1‐[N,N‐di(4‐carboxyphenyl)amino]naphthalene. These amorphous polyamides were readily soluble in various organic solvents and could be cast into transparent and tough films. The aromatic polyamides had useful levels of thermal stability associated with high glass‐transition temperatures (268–355 °C), 10% weight loss temperatures in excess of 480 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers showed maximum ultraviolet–visible absorption at 350–358 nm and exhibited fluorescence emission maxima around 435–458 nm in N‐methyl‐2‐pyrrolidinone solutions with fluorescence quantum yields ranging from 0.4 to 15.0%. The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyamide films cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple around 1.08–1.16 V (oxidation onset potential) versus Ag/AgCl in an acetonitrile solution and revealed good stability of the electrochromic characteristics, with a color change from colorless to green at applied potentials ranging from 0 to 1.6 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6094–6102, 2006  相似文献   

2.
N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine was synthesized from N‐(4‐nitrophenyl)‐diphenylamine by the Vilsmeier‐Haack reaction. Soluble aromatic poly(azomethine)s (PAMs) were prepared by the solution polycondensation of N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine and aromatic diamine in N‐methyl‐2‐pyrrolidone (NMP) at room temperature under reduced pressure. All the PAMs are highly soluble in various organic solvents, such as N,N‐dimethylacetamide (DMAc), chloroform (CHCl3), and tetrahydrofuran (THF). Differential scanning calorimetry (DSC) indicated that these PAMs had glass‐transition temperatures (Tgs) in the range of 170–230 °C, and a 10% weight‐loss temperatures in excess of 490 °C with char yield at 800 °C in nitrogen higher than 60%. These PAMs in NMP solution showed UV‐Vis charge‐transfer (CT) absorption at 405–421 nm and photoluminescence peaks around 462–466 nm with fluorescence quantum efficiency (ΦF) 0.10–0.99%. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of these PAMs can be determined from cyclic voltammograms as 4.86–5.43 and 3.31–3.34 eV, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4921–4932, 2007  相似文献   

3.
A series of novel poly(amine amide)s ( IIa – IIl ) with pendent N‐carbazolylphenyl units having inherent viscosities of 0.25–1.06 dL/g were prepared via direct phosphorylation polycondensation from various dicarboxylic acids and a carbazole‐based aromatic diamine. Except for poly(amine amide) IIc , derived from trans‐1,4‐cyclohexanedicarboxylic acid, all the other amorphous poly(amine amide)s were readily soluble in many polar solvents, such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone (NMP), and could be cast into transparent and flexible films. The aromatic poly (amine amide)s had useful levels of thermal stability associated with relatively high glass‐transition temperatures (268–331 °C), 10% weight loss temperatures in excess of 540 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers exhibited maximum ultraviolet–visible absorption at 293–361 nm in NMP solutions. Their photoluminescence in NMP solutions exhibited fluorescence emission maxima around 362 and 448–499 nm for aromatic–aliphatic poly(amine amide)s IIa – IIc and aromatic poly (amine amide)s IId – IIl , respectively. The fluorescence quantum yield in NMP solutions ranged from 0.34% for IIj to 4.44% for IIa . The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine amide) films cast onto an indium tin oxide coated glass substrate exhibited reversible oxidation at 0.81 V and irreversible oxidation redox couples at 1.20 V versus Ag/AgCl in acetonitrile solutions, and they revealed excellent stability of the electrochromic characteristics, with a color change from yellow to green at applied potentials ranging from 0.00 to 1.05 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4108–4121, 2006  相似文献   

4.
Four series of polyimides I – VI with pendent triphenylamine (TPA) units having inherent viscosities of 0.44–0.88 dL/g were prepared from four diamines with two commercially available tetracarboxylic dianhydrides via a conventional two‐step procedure that included a ring‐opening polyaddition to give polyamic acids, followed by chemical cyclodehydration. These polymers were amorphous and could afford flexible films. All the polyimides had useful levels of thermal stability associated with high softening temperatures (279–300 °C), 10% weight‐loss temperatures in excess of 505 °C, and char yields at 800 °C in nitrogen higher than 58%. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyimide films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited a or two reversible oxidation couples at 0.65–0.78 and 1.00–1.08 V versus Ag/AgCl in acetonitrile solution. The polymer films revealed electrochromic characteristics with a color change from neutral pale yellowish to blue doped form at applied potentials ranging from 0.00 to 1.20 V. The CO2 permeability coefficients (P) and permeability selectivity (P/P) for these polyimide membranes were in the range of 4.73–16.82 barrer and 9.49–51.13, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7937–7949, 2008  相似文献   

5.
A series of organosoluble, aromatic polyamides were synthesized from a 4‐methyl‐substituted, triphenylamine‐containing, aromatic diacid monomer, 4,4′‐dicarboxy‐4″‐methyltriphenylamine, which is a blue‐light (454‐nm) emitter with a fluorescence quantum efficiency of 46%. These triphenylamine‐based, high‐performance polymers had strong fluorescence emissions in the blue region with high quantum yields up to 64% and one reversible oxidation redox couple around 1.20 V versus Ag/AgCl in acetonitrile solutions. They exhibited good thermal stability, with 10% weight loss temperatures above 480 °C under a nitrogen atmosphere and with relatively high glass‐transition temperatures (252–309 °C). All the polyamides revealed excellent stability of electrochromic characteristics, changing color from the original pale yellow to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4095–4107, 2006  相似文献   

6.
A new triphenylamine‐based diamine monomer, 4,4′‐diamino‐2″,4″‐dimethoxytriphenylamine ( 2 ), was synthesized from readily available reagents and was reacted with various aromatic dicarboxylic acids to produce a series of aromatic polyamides ( 4a–h ) containing the redox‐active 2,4‐dimethoxy‐substituted triphenylamine (dimethoxyTPA) unit. All the resulting polyamides were readily soluble in polar organic solvents and could be solution cast into tough and flexible films. These polymers exhibited good thermal stability with glass transition temperatures of 243–289 °C and softening temperatures of 238–280 °C, 10% weight loss temperatures in excess of 470 °C in nitrogen, and char yields higher than 60% at 800 °C in nitrogen. The redox behaviors of the polymers were examined using cyclic voltammetry (CV). All these polyamides showed two reversible oxidation processes in the first CV scan. The polymers also displayed low ionization potentials as a result of their dimethoxyTPA moieties. In addition, the polymers displayed excellent stability of electrochromic characteristics with coloration change from a colorless neutral state to green and blue‐purple oxidized states. These anodically coloring polyamides showed high green coloration efficiency (CE = 329 cm2/C), high contrast of optical transmittance change (ΔT% = 84% at 829 nm), and long‐term redox reversibility. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3392–3401, 2010  相似文献   

7.
A series of novel triphenylamine‐based polymers were synthesized from benzaldehyde and triphenylamine derivatives. All the polymers having high molecular weight are readily soluble in many organic solvents and could be solution‐cast into amorphous films. They had glass transition temperatures (Tgs) in the range of 193–217 °C, and 10% weight loss temperatures in excess of 475 °C. Cyclic voltammograms of all polymers showed reversible oxidation redox peaks and Eonset around 0.42–0.90 V, indicating that the polymers are electrochemically active and stable. In addition, all these polymers revealed photochemical characteristics in conformity with their electrochromic characteristics. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2118–2131, 2009  相似文献   

8.
A series of new organosoluble poly(amine hydrazide)s were synthesized via the Yamazaki phosphorylation reaction and were solution‐cast into transparent films. Differential scanning calorimetry indicated that the hydrazide polymers could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s exhibited glass‐transition temperatures in the range of 276–297 °C, 10% weight loss temperatures in excess of 520 °C, and char yields at 800 °C in nitrogen higher than 67%. The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of these polymers prepared by the casting of polymer solutions onto an indium tin oxide coated glass substrate exhibited two reversible oxidative redox couples at 1.10–1.19 and 1.35–1.60 V versus Ag/AgCl in an acetonitrile solution, respectively. The poly(amine hydrazide)s revealed excellent stability of the electrochromic characteristics, changing color from the original pale yellow to green and then to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 48–58, 2007  相似文献   

9.
A new diamine monomer containing fluorene unit, 3,5‐diamino‐N‐(9H‐fluoren‐2‐yl)benzamide was successfully synthesized via the condensation of 2‐aminofluorene and 3,5‐dinitrobenzoyl chloride and subsequent reduction of the dinitro compound. A series of novel aromatic polyimides having pendent fluorenamide moieties were prepared from the reaction of the diamine monomer and various tetracarboxylic dianhydrides by a conventional two‐step polymerization process. The polyimides were obtained in quantitative yields with inherent viscosities of 0.33–0.44 dl/g. The resulting polymers dissolved in N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The glass transition temperature of these polymers was in the range of 261–289°C. They were fairly stable up to a temperature around 450°C and lost 10% weight in the range of 498–556°C in nitrogen. The UV–vis absorption spectra showed that all of the polymers had absorption maxima around 320 nm. Cyclic voltammograms of the polyimides revealed an oxidation wave with a peak around 1.3 V. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Two novel series of ambipolar and near‐infrared electrochromic aromatic polyamides with electroactive anthraquinone group were synthesized from new aromatic diamines, 2‐(bis(4‐aminophenyl)amino)anthracene‐9,10‐dione and 2‐(4‐(bis(4‐aminophenyl)amino)phenoxy)anthracene‐9,10‐dione, respectively, via low‐temperature solution polycondensation reaction. These polymers were readily soluble in many polar solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures (Tg) (285–360 °C). Electrochemical studies of these electrochromic polyamides revealed ambipolar behavior with reversible redox couples and high contrast ratio both in the visible range and near‐infrared region. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A series of solution‐processable electrochromic (EC) aromatic polyamides with bis(triphenylamine)ether (TPAO) units in the backbone were prepared by the phosphorylation polyamidation from a newly synthesized diamine monomer, bis(N‐4‐aminophenyl‐N‐4‐methoxyphenyl‐4‐aminophenyl)ether, and various dicarboxylic acids. These polymers were highly soluble in many organic solvents and showed useful levels of thermal stability associated with high glass‐transition temperatures and high char yields (higher than 50 at 800 °C in nitrogen). The polymer films showed reversible electrochemical oxidation and electrochromism with high contrast ratio in the visible range, which also exhibited moderate coloration efficiency (CE), low switching time, and good stability. Especially, the polyamides with two electroactive nitrogen centers only showed one‐stage oxidative coloring (no intervalence charge‐transfer [IV‐CT] band was detected), implying the two electrons are simultaneously removed from the TPAO units on account of the ether‐linkage definitely isolated the two redox centers. The mixed‐valence (MV) Class I/II/III transition and electrochemistry of the synthesized model compounds were investigated for the bridged triarylamine system with various N? N distances and intramolecular electron transfer (ET) capability. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A new triphenylamine‐based polyamide I was prepared by direct polycondensation of AB‐type monomer, 4‐amino‐4′‐carboxy‐4″‐methoxytriphenylamine ( 4 ), in the presence of triphenyl phosphite and pyridine as condensation agents. The obtained polyamide I showed excellent solubility in aprotic polar solvents such as NMP, DMAc, DMF, and DMSO and could be cast into transparent film with weight‐average molecular weight (Mw = 63,400) and polydispersity index (PDI = 1.79). The polyamide I exhibited good thermal stability with relatively high glass‐transition temperature (282 °C), 10% weight‐loss temperature above 470 °C under a nitrogen atmosphere, and char yield at 800 °C in nitrogen higher than 64%. It also showed maximum ultraviolet‐visible absorption at 362 nm and exhibited fluorescence emission maxima at 493 nm in NMP solution with fluorescence quantum yield 4.4%. Cyclic voltammogram of polyamide I film cast onto an indium tin oxide coated glass substrate exhibited one oxidative redox couple at 0.72 V (oxidation onset potential) versus Ag/AgCl in acetonitrile solution and revealed good stability of the electrochromic characteristic with a color change from colorless to green at applied potentials ranging from 0.00 to 1.10 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1988–2001, 2009  相似文献   

13.
Polyurethanes bearing urethane groups in the side chains were prepared by the addition of isocyanates to the hydroxyl groups in poly(hydroxyurethane) prepared by the polyaddition of a bifunctional cyclic carbonate with 1,12‐diaminododecane. The urethanization proceeded quantitatively in the presence of a catalytic amount of di‐n‐butyltin dilaurate. The resulting polyurethane had a higher glass transition temperature than the original poly(hydroxyurethane), although its esterified product had a lower glass transition temperature. The urethanization with 3‐(triethoxysilyl)propyl isocyanate also proceeded effectively to afford both soluble and insoluble polymers, depending on the reaction conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3408–3414, 2007  相似文献   

14.
The study of the electrochemical fluorescence switching properties of the conjugated copolymers containing fluorene, triphenylamine, and 1,3‐diphenylimidazolidin‐2‐one moieties is reported. The polymers show high fluorescence quantum yields, excellent thermal stability, and good solubility in polar organic solvents. While the polymer emits blue light under UV irradiation, the fluorescence intensity is quenched upon electrochemical oxidation. The fluorescent behavior can be reversibly switched between nonfluorescent (oxidized) state and strong fluorescence (neutral) state with a high contrast ratio (If/If0) of 16.3. The role of the electrochemical oxidation of the triphenylamine moieties is to generate the corresponding radical cations that lead to fluorescence quenching in the solid matrix. © 2012 Wiley Periodicals, Inc. J. Polym. Sci. Part A: Polym Chem, 2012  相似文献   

15.
Novel electrochromic polymers were prepared by the click postfunctionalization of poly(4‐azidomethylstyrene) with alkyne‐containing aromatic amine units in the presence of Cu(I) catalysts. Two kinds of aromatic amine units, tris(4‐alkoxyphenyl)amine and N,N,N′,N′‐tetraphenyl‐p‐phenylenediamine, were introduced into polystyrene side chains, which were completely characterized by gel permeation chromatography–multiangle light scattering, nuclear magnetic resonance, and infrared spectroscopies, and elemental analysis. Thermal analyses demonstrated the high stability with the decomposition temperatures exceeding 300 °C even after postfunctionalization. The UV–vis absorption spectra of the polymer thin films revealed negligible absorption in the visible region, as reasonably confirmed by visual observation. The polymer thin films were prepared by spray‐coating on an indium tin oxide‐coated glass plate. Cyclic voltammograms of these films exhibited anodic peaks ascribed to the oxidation of the side‐chain aromatic amine moieties. The tris(4‐alkoxyphenyl)amine unit displayed one‐step oxidation at 0.287 V (vs. Ag/AgCl), while the N,N,N′,N′‐tetraphenyl‐p‐phenylenediamine unit showed two‐step oxidations at 0.297 and 0.641 V. These oxidation processes produced new colors of the polymer films. The former triarylamine‐based chromophore provided a blue color after the oxidation, while the latter phenylenediamine‐based chromophore showed a potentially controlled green and dark blue colors. The reversibility and switching behaviors of these color changes were also comprehensively investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
Two novel poly(amine‐hydrazide)s were prepared from the polycondensation reactions of the dicarboxylic acid, 9‐[N,N‐di(4‐carboxyphenyl)amino]anthracene ( 1 ), with terephthalic dihydrazide ( TPH ) and isophthalic dihydrazide ( IPH ) via the Yamazaki phosphorylation reaction, respectively. The poly(amine‐hydrazide)s were readily soluble in many common organic solvents and could be solution cast into transparent films. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass‐transition temperatures (Tg) in the range of 182–230 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s had useful levels of thermal stability associated with high Tg (263–318 °C), 10% weight‐loss temperatures in excess of 500 °C, and char yield at 800 °C in nitrogen higher than 55%. These organo‐soluble anthrylamine‐based poly(amine‐hydrazide)s and poly (amine‐1,3,4‐oxadiazole)s exhibited maximum UV‐vis absorption at 346–349 and 379–388 nm in N‐methyl‐2‐pyrrolidone (NMP) solution, respectively. Their photoluminescence spectra in NMP solution showed maximum bands around 490–497 nm in the green region. The poly(amine‐hydrazide) I ‐ IPH showed a green photoluminescence at 490 nm with PL quantum yield of 29.9% and 17.0% in NMP solution and film state, respectively. The anthrylamine‐based poly(amine‐1,3,4‐oxadiazole)s revealed a electrochromic characteristics with changing color from the pale yellow neutral form to the red reduced form when scanning potentials negatively from 0.00 to ?2.20 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1584–1594, 2009  相似文献   

17.
A series of novel aromatic polyarylates with triphenylamine units in the main chain and as the pendent group were prepared from the dicarboxylic acid monomer, N,N‐bis(4‐carboxyphenyl)‐N′, N′‐diphenyl‐1,4‐phenylenediamine (1), and various bisphenols. These polyarylates were amorphous and readily soluble in common organic solvents. They had excellent levels of thermal stability associated with moderately high Tg values (182–263 °C). These polymers exhibited strong UV–vis absorption bands at 357–360 nm in toluene solution and the photoluminescence spectra showed maximum bands around 493–503 nm in the green region. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the polyarylates exhibited two reversible oxidation redox couples in acetonitrile solution at Eonset 0.77–0.79 V and 1.12–1.14 V, respectively. The typical polymer 3b film revealed good stability of electrochromic characteristics, with color change from colorless to green and blue at applied potentials ranging from 0.00 to 1.24 V. These anodically polymeric electrochromic materials not only showed excellent reversible electrochromic stability with good green coloration efficiency (CE = 159 cm2/C) and blue coloration efficiency (CE = 154 cm2/C) but also exhibited high contrast of optical transmittance change (ΔT%), 54% in 895 nm for green color and up to 84% in 595 nm for blue color. After over 100 cyclic switches, the polymer films still exhibited excellent stability of electrochromic characteristics. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2004–2014, 2007  相似文献   

18.
New aromatic 3F polymers were obtained from condensations of 2,2,2-trifluoroacetophenone (1) with biphenyl (a), terphenyl (b), a mixture of biphenyl with terphenyl (ab), phenyl ether (c) and diphenoxybenzophenone (d). The reactions were performed at room temperature in the Brønsted superacid trifluoromethanesulfonic acid (TFSA) and in a mixture of TFSA with dichloromethane. The polymers show high glass transition temperatures >170 °C, excellent thermal stability (decomposition temperatures ≥475 °C) and good solubility in chlorinated solvents and strong acids. The 3F polymer structures based on biphenyl and terphenyl show attractive permeability coefficients for CO2 (∼200 Barrers) and H2 (∼120 Barrers), whereas the 3F polymers that contain ether linkages have permeability coefficients in the typical range of regular polysulfone and polycarbonate. However, in sharp contrast to polysulfone and polycarbonate families, new 3F polymers possess high chemical stability and they have advantages since their reactions, based on commercially available monomers, can be carried out in one-pot at room temperature and offer a large variety of structures not possible to prepare by other synthetic methods.  相似文献   

19.
Novel optically active amino acid based polyacetylenes bearing eugenol and fluorene moieties were synthesized, and their properties, including chiroptical ones, were analyzed. N‐[1‐(3,4‐Dimethoxyphenyl)‐2‐propyloxycarbonyl]‐L ‐alanine N′‐propargylamide ( 1 ), N‐[1‐(3,4‐dimethoxyphenyl)‐2‐propyloxycarbonyl]‐L ‐alanine propargyl ester ( 2 ), N‐(9‐fluorenylmethoxycarbonyl)‐L ‐alanine N′‐propargylamide ( 3 ), and N‐(9‐fluorenylmethoxycarbonyl)‐L ‐alanine propargyl ester ( 4 ) were polymerized with a rhodium‐zwitterion catalyst in tetrahydrofuran to afford the corresponding polymers with moderate molecular weights ranging from 10,800 to 17,300 in good yields. Because of the large specific rotation and circular dichroism (CD) signal, it was concluded that the poly(N‐propargylamide)s [poly( 1 ) and poly( 3 )] took a helical structure with a predominantly one‐handed screw sense. The solvent and temperature could tune the helical structure of poly( 1 ). On the other hand, the poly(propargyl ester)s [poly( 2 ) and poly( 4 )] exhibited only small specific rotations and CD signals. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 810–819, 2006  相似文献   

20.
A series of novel polyamides with pendent anthrylamine units were prepared via the direct phosphorylation polycondensation from various diamines and the anthrylamine‐based aromatic dicarboxylic acid, 9‐[N,N‐di(4‐carboxyphenyl)amino]anthracene (4). The aromatic polyamides had useful levels of thermal stability associated with relatively high softening temperatures (Ts) (290–300 °C), 10% weight‐loss temperatures (Td10) nearly in excess of 550 °C, and char yields at 800 °C in nitrogen higher than 60%. These aromatic polyamides I exhibited highly photoluminescence quantum yield in NMP solution ranges from 55% for Ia to 74% for Ie due to the introduction of anthrylamine chromophores. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited one oxidation and reduction couples (Eonset) around 1.10 and ?1.50 V versus Ag/AgCl in acetonitrile (CH3CN) and DMF solutions, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7354–7368, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号