首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of the ‘oximato’‐ligand precursor A (Fig. 1) and metal salts with KCN gave two mononuclear complexes [ML(CN)(H2O)n](ClO4) ( 1 and 2 ; L={N‐(hydroxy‐κO)‐α‐oxo‐N′‐[(pyridin‐2‐yl‐κN)methyl[1,1′‐biphenyl]‐4‐ethanimidamidato‐κN′}; M=CoII ( 1 ), CuII ( 2 ); n=2 for CoII, n=0 for CuII; Figs. 2 and 3). The new cyano‐bridged pentanuclear ‘oximato’ complexes [{ML(H2O)n(NC)}4M1(H2O)x](ClO4)2 ( 3 – 6 ) and trinuclear complexes [{ML(H2O)n(NC)}2M1L](ClO4) ( 7 – 10 ) ([M1=MnII, CuII; x=2 for MnII, x=0 for CuII] were synthesized from mononuclear complexes and characterized by elemental analyses, magnetic susceptibility, molar conductance, and IR and thermal analysis. The four [ML(CN)(H2O)n]+ moieties are connected by a metal(II) ion in the pentanuclear complexe 3 – 6 , each one involving four cyano bridging ligands (Fig. 4). The central metal ion displays a square‐planar or octahedral geometry, with the cyano bridging ligands forming the equatorial plane. The axial positions are occupied by two aqua ligands in the case of the central Mn‐atom. The two [ML(CN)(H2O)n]+ moieties and an ‘oximato’ ligand are connected by a metal(II) ion in the trinuclear complexes 7 – 10 , each one involving two cyano bridging ligands (Fig. 5). The central metal ions display a distorted square‐pyramidal geometry, with two cyano bridging ligands and the donor atoms of the tridentate ‘oximato’ ligand. Moreover catalytic activities of the complexes for the disproportionation of hydrogen peroxide (H2O2) were also investigated in the presence of 1H‐imidazole. The synthesized homopolynuclear CuII complexes 6 and 10 displayed eficiency in disproportion reactions of H2O2 producing H2O and dioxygen thus showing catalase‐like activity.  相似文献   

2.
Two binuclear oxo-bridged half-titanocene complexes, µ-oxo-bis[(1-aryl-2,3,4,5-tetramethylcyclopentadienyl)dichlorotitanium] [(ArMe4CpTiCl2)2O, Ar?=?4- i PrC6H4 (3), 4- t BuC6H4 (4)], have been prepared by the treatment of 1-aryl-2,3,4,5-tetramethylcyclopentadienyltitanium trichloride [ArMe4CpTiCl3, Ar?=?4- i PrC6H4 (1), 4- t BuC6H4 (2)] with 0.5?equiv of H2O. Complexes 3 and 4 have been characterized by elemental analysis and 1H- and 13C-NMR (nuclear magnetic resonance; NMR) spectroscopies, and their molecular structures have been determined by X-ray crystallography. When activated with i Bu3Al and Ph3CB(C6F5)4, complexes 3 and 4 both exhibit reasonable catalytic activity for ethylene polymerization (90?×?103 to 280?×?103?kg PE (mol?Ti)?1?bar?1?h?1), producing polyethylenes with moderate molecular weight.  相似文献   

3.
Eight new R1CpTiCl2(OC(C6H4R2)Ph2) complexes were synthesized by the reaction of R1CpTiCl3 with Ph2(R2C6H4)COH (R2C6H4 = phenyl or o‐methyl‐phenyl) in the presence of Et3N in good yield and characterized by 1H NMR, elemental analysis, IR and mass spectrometry. A suitable single crystal of complex 2 (R1: CH3, R2: H) was obtained and the structure determined by X‐ray diffraction. When activated by methylaluminoxane (MAO), all complexes were active for the polymerization of ethylene and styrene. The effect of variation in temperature, catalyst concentration and MAO/catalyst molar ratio was also studied. Complex 5 (R1: n‐C4H9, R2: H) showed a moderate conversion (37.4%) for the polymerization of methyl methacrylate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Hydrocarbon‐bridged Metal Complexes. L Dicarbonyl Cyclopentadienyl Pyridoyl Iron Complexes as Ligands Dicarbonyl‐cyclopentadienyl‐2‐ and 3‐pyridoyl‐iron (L1, L2) and 2,6‐dicarbonyl‐pyridine‐bis(dicarbonyl‐cyclopentadienyl‐iron) (L3) function as ligands in metal complexes and the N,O‐chelates [(OC)4M(L1)] (M = Mo, W, 8 a, b ) and [(Ph3P)2Cu(L1)]+BF4 ( 9 ) were prepared. Monodentate coordination of L1 and L2 through the pyridine N‐atom occurs in the palladium(II) complexes [Cl2Pd(PnBu3)(L1)] ( 10 ), [Cl2Pd(PnBu3)(L2)] ( 11 ) and [Cl2Pd(L2)2] ( 12 ). Ligand L3 forms the O,N,O‐bis(chelate) [Cl2Zn(L3)] ( 13 ). The crystal and molecular structures of L1, 8 b (M = W), 9–11 and 13 were determined by X‐ray diffraction.  相似文献   

5.
Chloride abstraction from the half‐sandwich complexes [RuCl2(η6p‐cymene)(P*‐κP)] ( 2a : P* = (Sa,R,R)‐ 1a = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐1‐phenylethyl)]phosphoramidite; 2b : P* = (Sa,R,R)‐ 1b = (1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl bis[(1R)‐(1‐(1‐naphthalen‐1‐yl)ethyl]phosphoramidite) with (Et3O)[PF6] or Tl[PF6] gives the cationic, 18‐electron complexes dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐phenyl]ethyl}[(1R)‐1‐phenylethyl]phosphoramidite‐κP}ruthenium(II) hexafluorophosphate ( 3a ) and [Ru(S)]‐dichloro(η6p‐cymene){(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl {(1R)‐1‐[(1,2‐η)‐naphthalen‐1‐yl]ethyl}[(1R)‐1‐(naphthalen‐1‐yl)ethyl]phosphoramidite‐κP)ruthenium(II) hexafluorophosphate ( 3b ), which feature the η2‐coordination of one aryl substituent of the phosphoramidite ligand, as indicated by 1H‐, 13C‐, and 31P‐NMR spectroscopy and confirmed by an X‐ray study of 3b . Additionally, the dissociation of p‐cymene from 2a and 3a gives dichloro{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐(1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP)ruthenium(II) ( 4a ) and di‐μ‐chlorobis{(1Sa)‐[1,1′‐binaphthalene]‐2,2′‐diyl [(1R)‐1‐(η6‐phenyl)ethyl][(1R)‐1‐phenylethyl]phosphoramidite‐κP}diruthenium(II) bis(hexafluorophosphate) ( 5a ), respectively, in which one phenyl group of the N‐substituents is η6‐coordinated to the Ru‐center. Complexes 3a and 3b catalyze the asymmetric cyclopropanation of α‐methylstyrene with ethyl diazoacetate with up to 86 and 87% ee for the cis‐ and the trans‐isomers, respectively.  相似文献   

6.
The syntheses of a series of l‐methyl‐3‐aryl‐substituted titanocene and zirconocene dichlorides are reported. These complexes are synthesized by the reaction of 2‐ and 3‐methyl‐6, 6‐dimethylfulvenes (1:4) with aryllithium, followed by the reaction with TiCl4·2THF, ZrCl4 and (CpTiCl2)2O respectively, to give complexes 1–5. The complex [η5‐1‐methyl‐3‐(α, α‐dimethylbenzyl) cyclopentadienyl] titanium dichloride has been studied by X‐ray diffraction. The red crystal of this complex is monoclinic, space group P2t/C with unit cell parameters: a =6.973(6) × 10?1 nm, b =36.91(2) × 10?1 nm, c = 10.063(4) × 10?1 nm, α=β= γ = 93.35(5)°, V = 2584(5) × 10?3 nm3 and Z = 4. Refinement for 1004 observed reflections gives the final R of 0.088. There are four independent molecules per unit cell.  相似文献   

7.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   

8.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the two secondary aminic groups of the oxaazamacrocyclic precursor L with o‐nitrobenzylbromide (L1) or p‐nitrobenzylbromide (L2). Metal complexes of L1 and L2 have been synthesized and characterized by microanalysis, MS‐FAB, conductivity measurements, IR, UV‐Vis, 1H and 13C NMR spectroscopy and magnetic studies. Crystal structures of ligands L1 and L2, as well as complexes [CdL1(NO3)2]·2CH3CN and [Ag2Br(L2)2](ClO4)·2CH3CN have been determined by single crystal X‐ray crystallography.  相似文献   

9.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with dimethylpyridines (lutidines: 2,3‐lutidine, 2,3lut; 2,4‐lutidine, 2,4lut; 3,5‐lutidine, 3,5lut; 2,6‐lutidine, 2,6lut) and 2,4,6‐trimethylpyridine (2,4,6‐collidine, 2,4,6col) having general formulae [AuLCl3], trans‐[PdL2Cl2] and trans‐/cis‐[PtL2Cl2] were performed and the respective chemical shifts (δ1H, δ13C, δ15N) reported. The deshielding of protons and carbons, as well as the shielding of nitrogens was observed. The 1H, 13C and 15N NMR coordination shifts (Δ1Hcoord, Δ13Ccoord, Δ15Ncoord; Δcoord = δcomplex ? δligand) were discussed in relation to some structural features of the title complexes, such as the type of the central atom [Au(III), Pd(II), Pt(II)], geometry (trans‐ or cis‐), metal‐nitrogen bond lengths and the position of both methyl groups in the pyridine ring system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The tricyclic azoalkanes, (1α,4α,4aα,7aα)‐4,4a,5,6,7,7a‐hexahydro‐1,4,8,8‐tetramethyl‐1,4‐methano‐1H‐cyclopenta[d]pyridazine ( 1c ), (1α,4α,4aα,6aα)‐4,4a,5,6,6a‐pentahydro‐1,4,7,7‐tetramethyl‐1,4‐methano‐1H‐cyclobuta[d]pyridazine ( 1d ), (1α,4α,4aα,6aα)‐4,4a,6a‐trihydro‐1,4,7,7‐tetramethyl‐1,4‐methano‐1H‐cyclobuta[d]pyridazine ( 1e ), and (1α,4α,4aα,5aα)‐4,4a,5,5a‐tetrahydro‐1,4,6,6‐tetramethyl‐1,4‐methano‐1H‐cyclopropa[d]pyridazine ( 1f ), as well as the corresponding housanes, the 2,3,3,4‐tetramethyl‐substituted tricyclo[3.3.0.02,4]octane ( 2c ), tricyclo[3.2.0.02,4]heptane ( 2d ), and tricyclo[3.2.0.02,4]hept‐6‐ene ( 2e ), were subjected to γ‐irradiation in Freon matrices. The reaction products were identified with the use of ESR and, in part, ENDOR spectroscopy. As expected, the strain on the C‐framework increases on going from the cyclopentane‐annelated azoalkanes and housanes ( 1c and 2c ) to those annelated by cyclobutane ( 1d and 2d ), by cyclobutene ( 1e and 2e ), and by cyclopropane ( 1f ). Accordingly, the products obtained from 1c and 2c in all three Freons used, CFCl3, CF3CCl3, and CF2ClCFCl2, were the radical cations 3c .+ and 2c .+ of 2,3,4,4‐tetramethylbicyclo[3.3.0]oct‐2‐ene and 2,3,3,4‐tetramethylbicyclo[3.3.0]octane‐2,4‐diyl, respectively. In CFCl3 and CF3CCl3 matrices, 1d and 2d yielded analogous products, namely the radical cations 3d .+ and 2d .+ of 2,3,4,4‐tetramethylbicyclo[3.2.0]hept‐2‐ene and 2,3,3,4‐tetramethylbicyclo[3.2.0]heptane‐2,4‐diyl. The radical cations 3c .+ and 3d .+ and 2c .+ and 2d .+ correspond to their non‐annelated counterparts 3a .+ and 3b .+, and 2a .+ and 2b .+ generated previously under the same conditions from 2,3‐diazabicyclo[2.2.1]hept‐2‐ene ( 1a ) and bicyclo[2.1.0]pentane ( 2a ), as well as from their 1,4‐dimethyl derivatives ( 1b and 2b ). However, in a CF2ClCFCl2 matrix, both 1d and 2d gave the radical cation 4d .+ of 2,3,3,4‐tetramethylcyclohepta‐1,4‐diene. Starting from 1e and 2e , the radical cations 4e .+ and 4e′ .+ of the isomeric 1,2,7,7‐ and 1,6,7,7‐tetramethylcyclohepta‐1,3,5‐trienes appeared as the corresponding products, while 1f was converted into the radical cation 4f .+ of 1,5,6,6‐tetramethylcyclohexa‐1,4‐diene which readily lost a proton to yield the corresponding cyclohexadienyl radical 4f .. Reaction mechanisms leading to the pertinent radical cations are discussed.  相似文献   

11.
Syntheses, Structure and Reactivity of η3‐1,2‐Diphosphaallyl Complexes and [{(η5‐C5H5)(CO)2W–Co(CO)3}{μ‐AsCH(SiMe3)2}(μ‐CO)] Reaction of ClP=C(SiMe2iPr)2 ( 3 ) with Na[Mo(CO)35‐C5H5)] afforded the phosphavinylidene complex [(η5‐C5H5)(CO)2Mo=P=C(SiMe2iPr)2] ( 4 ) which in situ was converted into the η1‐1,2‐diphosphaallyl complex [η5‐(C5H5)(CO)2Mo{η3tBuPPC(SiMe2iPr)2] ( 6 ) by treatment with the phosphaalkene tBuP=C(NMe2)2. The chloroarsanyl complexes [(η5‐C5H5)(CO)3M–As(Cl)CH(SiMe3)2] [where M = Mo ( 9 ); M = W ( 10 )] resulted from the reaction of Na[M(CO)35‐C5H5)] (M = Mo, W) with Cl2AsCH(SiMe3)2. The tungsten derivative 10 and Na[Co(CO)4] underwent reaction to give the dinuclear μ‐arsinidene complex [(η5‐C5H5)(CO)2W–Co(CO)3{μ‐AsCH(SiMe3)2}(μ‐CO)] ( 11 ). Treatment of [(η5‐C5H5)(CO)2Mo{η3tBuPPC(SiMe3)2}] ( 1 ) with an equimolar amount of ethereal HBF4 gave rise to a 85/15 mixture of the saline complexes [(η5‐C5H5)(CO)2Mo{η2tBu(H)P–P(F)CH(SiMe3)2}]BF4 ( 18 ) and [Cp(CO)2Mo{F2PCH(SiMe3)2}(tBuPH2)]BF4 ( 19 ) by HF‐addition to the PC bond of the η3‐diphosphaallyl ligand and subsequent protonation ( 18 ) and/or scission of the PP bond by the acid ( 19 ). Consistently 19 was the sole product when 1 was allowed to react with an excess of ethereal HBF4. The products 6 , 9 , 10 , 11 , 18 and 19 were characterized by means of spectroscopy (IR, 1H‐, 13C{1H}‐, 31P{1H}‐NMR, MS). Moreover, the molecular structures of 6 , 11 and 18 were determined by X‐ray diffraction analysis.  相似文献   

12.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

13.
The trinuclear manganese(II) complexes [Mn3(L1)2(μ‐OAc)4]·2Et2O {HL1 = (1‐hydroxy‐4‐nitrobenzyl)((2‐pyridyl)methyl)((1‐methylimidazol‐2‐yl)methyl)amine} ( 1·2EtOH ), [Mn3(L2)2(μ‐OAc)4] {HL2 = ((1‐methylimidazol‐2‐yl)methyl)(1‐hydroxybenzyl)amine} ( 2 ) and [Mn3(L3)2(μ‐OAc)6] {L3 = bis(1‐methylimidazol‐2‐yl)methanone} ( 3 ) were synthesized. The compounds were characterized by X‐ray crystallography, mass spectrometry, IR, UV‐vis spectroscopy, and elemental analysis. The manganese atoms in 1 and 2 are bridged by phenol moieties of the ligands and acetates. In 3 they are only bridged by acetates in a mono‐ and bi‐dentate way. The resulting Mn···Mn distances are 3.233(1) Å ( 1 ), 3.364(1) Å ( 2 ) and 3.643(7) Å ( 3 ). In the present compounds different limiting cases for the phenomenon of the carboxylate shift are realized. Besides symmetric mono‐ and bi‐dentate bridging an unusual intermediate is also observed. 1·2EtOH is the first example of a trinuclear model for the OEC that shows catalase activity. Furthermore it was characterized by temperature dependent magnetic susceptibility measurements and a total spin ground state of St = 5/2 was found. The results for 1 reveals antiferromagnetic coupling between the central and the terminal manganese ions, with J = ?1.2 cm?1, g = 2.00 (fixed), χTIP = 150×10?6 cm3mol?1.  相似文献   

14.
Organometallic Compounds of the Lanthanides. 139 Mixed Sandwich Complexes of the 4 f Elements: Enantiomerically Pure Cyclooctatetraenyl Cyclopentadienyl Complexes of Samarium and Lutetium with Donor‐Functionalized Cyclopentadienyl Ligands The reactions of [K{(S)‐C5H4CH2CH(Me)OMe}], [K{(S)‐C5H4CH2CH(Me)NMe2}] and [K{(S)‐C5H4CH(Ph)CH2NMe2}] with the cyclooctatetraenyl lanthanide chlorides [(η8‐C8H8)Ln(μ‐Cl)(THF)]2 (Ln = Sm, Lu) yield the mixed cyclooctatetraenyl cyclopentadienyl lanthanide complexes [(η8‐C8H8)Sm{(S)‐η5 : η1‐C5H4CH2CH(Me)OMe}] ( 1 a ), [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH2CH(Me)NMe2}] (Ln = Sm ( 2 a ), Lu ( 2 b )) and [(η8‐C8H8)Ln{(S)‐η5 : η1‐C5H4CH(Ph)CH2NMe2}] (Ln = Sm ( 3 a ), Lu ( 3 b )). For comparison, the achiral compounds [(η8‐C8H8)Ln{η5 : η1‐C5H4CH2CH2NMe2}] (Ln = Sm ( 4 a ), Lu ( 4 b )) are synthesized in an analogous manner. 1H‐, 13C‐NMR‐, and mass spectra of all new compounds as well as the X‐ray crystal structures of 3 b and 4 b are discussed.  相似文献   

15.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

16.
Imine complexes [IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}{P(OR)3}]BPh4 ( 1 , 2 ) (Ar = C6H5, 4‐CH3C6H4; R = Me, Et) were prepared by allowing chloro complexes [IrCl25‐C5Me5){P(OR)3}] to react with benzyl azides ArCH2N3. Bis(imine) complexes [Ir(η5‐C5Me5){κ1‐NH=C(H)Ar}2{P(OR)3}](BPh4)2 ( 3 , 4 ) were also prepared by reacting [IrCl25‐C5Me5){P(OR)3}] first with AgOTf and then with benzyl azide. Depending on the experimental conditions, treatment of the dinuclear complex [IrCl25‐C5Me5)]2 with benzyl azide yielded mono‐ [IrCl25‐C5Me5){κ1‐NH=C(H)Ar}] ( 5 ) and bis‐[IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}2]BPh4 ( 6 ) imine derivatives. In contrast, treatment of chloro complexes [IrCl25‐C5Me5){P(OR)3}] with phenyl azide C6H5N3 gave amine derivatives [IrCl(η5‐C5Me5)(C6H5NH2){P(OR)3}]BPh4 ( 7 , 8 ). The complexes were characterized spectroscopically (IR, NMR) and by X‐ray crystal structure determination of [IrCl(η5‐C5Me5){κ1‐NH=C(H)C6H4‐4‐CH3}{P(OEt)3}]BPh4 ( 2b ).  相似文献   

17.
Eight new multinuclear FeIII and CrIII complexes involving the tetradentate Schiff bases N,N′‐bis(salicylidene)ethylenediamine (salenH2) or N,N′‐bis(salicylidene)benzene‐1,2‐diamine (salophH2) and the two new ligands 4,4′,4″,4′′′,4′′′′,4′′′″‐[1,3,5‐triazine‐2,4,6‐triyltris(nitrilomethylidyne‐4,1‐phenyleneoxy‐1,3,5‐triazine‐6,2,4‐triyldiimino)]hexakis[benzoic acid] ( 4 ) or 5,5′,5″,5′′′,5′′′′,5′′′″‐[1,3,5‐triazine‐2,4,6‐triyltris(nitrilomethylidyne‐4,1‐phenyleneoxy‐1,3,5‐triazine‐6,2,4‐triyldiimino)]hexakis[benzene‐1,3‐dicarboxylic acid] ( 5 ) were synthesized (Schemes 1 and 2) and characterized by means of 1H‐NMR and FT‐IR spectroscopy, elemental analysis, LC/MS analysis, AAS (atomic‐absorption spectrum) analysis, thermal analyses, and magnetic‐susceptibility measurements. The complexes can also be characterized as low‐spin distorted‐octahedral FeIII and CrIII complexes bridged by carboxylato moieties.  相似文献   

18.
The use of tetravalent cerium alkoxides, nitrates, and triflates was studied as a direct route to [CeIV(carbene)] complexes. Protonolysis reactions between 1H‐imidazolium‐ or imidazoline (=4,5‐dihydro‐1H‐imidazole)‐containing alkoxide proligands HL (L=OCMe2CH2[1‐C(NCHCHNiPr)]) and HLS (LS=OCMe2CH2[1‐C(NCH2CH2NiPr)]) and CeIV tert‐butoxide, triflate, and nitrate compounds were studied to target [CeIV(N‐heterocyclic carbene)] complexes (of unsaturated and saturated carbenes, resp.). Instead, tetravalent cerium imidazolium [(OtBu)3Ce(μ‐OtBu)2(μ‐HL)Ce(OtBu)3], or imidazolinium adducts [(OtBu)3Ce(μ‐OtBu)2(μ‐HLS)Ce(OtBu)3] were isolated. However, the salt metathesis of cerium triflate with KL provided a simple route to [CeL4], which was significantly improved if an external oxidant, benzoquinone, was included in the mixture to maintain oxidation‐state integrity. Likewise, the salt metathesis of cerium triiodide with KL and added benzoquinone provided a straightforward route to [CeL4].  相似文献   

19.
Two bidentate Schiff base ligands (HL1 = Nn‐butyl‐4‐[(E)‐2‐(((2‐aminoethyl)imino)methyl)phenol]‐1,8‐naphthalimide; and HL2 = Nn‐butyl‐4‐[(E)‐2‐(((2‐aminoethyl)imino)methyl)‐6‐methoxyphenol]‐1,8‐naphthalimide) with their metal complexes [Cu(L1)2] ( 1 ), [Zn(L1)2(Py)]2?H2O ( 2 ) and [Ni(L2)2(DMF)2] ( 3 ) have been synthesized and characterized. Single‐crystal X‐ray structure analysis reveals that complex 1 has a four‐coordinated square geometry, while complex 2 is a five‐coordinated square pyramidal structure and complex 3 is a distorted six‐coordinated octahedral structure. Cyclic voltammograms of 1 indicate an irreversible Cu2+/Cu+ couple. In vitro antioxidant activity assay demonstrates that the ligands and the two complexes 1 and 3 display high scavenging activity against hydroxyl (HO?) and superoxide (O2??) radicals. Moreover, the fluorescence properties of the ligands and complexes 1 – 3 were studied in the solid state. Metal‐mediated enhancement is observed in 2 , whereas metal‐mediated fluorescence quenching occurs with 1 and 3 .  相似文献   

20.
Metal Complexes with N2O2S2 Donor Set. Synthesis and Characterization of the Cobalt(II), Nickel(II), and Copper(II) Complexes of a 15‐ and a 16‐Membered Bis(2‐hydroxyethyl) Pendant Macrocyclic Ligand The macrocyclic ligands 6, 10‐bis(2‐hydroxyethyl)‐7, 8, 9, 11, 17, 18‐hexahydro‐dibenzo‐[e, n][1, 4, 8, 12]‐dithiadiaza‐cyclopentadecine ( 1 ) (L1) and 5, 13‐bis(2‐hydroxyethyl)‐7, 8, 9, 10, 16, 17, 18, 19, 20‐nonahydro‐dibenzo‐[g, o][1, 9, 5, 13]‐dithiadiaza‐cyclohexadecine (L4) have been prepared. They form the stable complexes [CoL1(‐H)CoL1](ClO4)3 ( 2 ), [NiL1](ClO4)2·MeOH ( 3 ), Λ‐[CuL1](ClO4)2·MeOH ( 4a ) and rac‐[CuL1](ClO4)2·MeOH ( 4b ), [NiL4](ClO4)2 ( 5 ), and [CuL4](ClO4)2 ( 6 ). The compounds 1 to 6 have been characterized by standard methods and single‐crystal X‐ray diffraction. In the complexes 2 to 6 the metal atoms are octahedrally coordinated by the N2O2S2 donor set of the ligands. L1 and L4 are folded herein along the N···M···S‐ and the N···M···N′‐axes, respectively. This results at the metal atom in a allcis‐configuration for the complexes of L1 and a trans‐N2cis‐O2cis‐S2‐configuration for the complexes of L4. The cobalt(II) complex 2 is a dimer, bridged by a rather short hydrogen bridge of 2.402(12)Å length. The copper(II) complexes of L1 and L4 differ with respect to the Jahn‐Teller‐distortion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号