首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sr3(BS3)2 and Sr3(B3S6)2: Two Novel Non‐oxidic Chalcogenoborates with Boron in a Trigonal‐Planar Coordination The thioborates Sr3(BS3)2 and Sr3(B3S6)2 were prepared from strontium sulfide, amorphous boron and sulfur in solid state reactions at a temperature of 1123 K. In a systematic study on the structural cation influence on this type of ternary compounds, the crystal structures were determined by single crystal X‐ray diffraction. Sr3(BS3)2 crystallizes in the monoclinic spacegroup C2/c (No. 15) with a = 10.187(4) Å, b = 6.610(2) Å, c = 15.411(7) Å, β = 102.24(3)° and Z = 4. The crystal structure of Sr3(B3S6)2 is trigonal, spacegroup R3¯ (Nr. 148), with a = 8.605(1) Å, c = 21.542(4) Å and Z = 3. Sr3(BS3)2 contains isolated [BS3]3— anions with boron in a trigonal‐planar coordination. The strontium cations are found between the layers of orthothioborate anions. Sr3(B3S6)2 consists of cyclic [B3S6]3— anions and strontium cations, respectively.  相似文献   

2.
The crystal structures of Nd(OH)2NO3 and Gd(OH)2NO3 have been determined from single-crystal X-ray diffraction techniques. Crystallization occurs in monoclinic space group P21 (No. 4) with a = 6.420(1), b = 3.838(1), c = 7.746(2) Å, and β = 98.18(2)° for Nd(OH)2NO3 and a = 6.340(2), b = 3.715(1), c = 7.728(2) Å, and β = 96.95(2)° for Gd(OH)2NO3. The structures were refined to residual indices of 0.025 and 0.048, respectively, using 372 and 360 unique reflections. The lanthanoid metal atoms are nine-coordinated, having a tricapped trigonal prismatic geometry. The nitrate counter ion acts as a bidentate ligand, while the two hydroxide oxygen atoms link symmetry-related lanthanoid atoms, forming two-dimensional layers.  相似文献   

3.
Systematic studies on quaternary thio‐ and selenoborates containing heavier alkaline earth metal cations led to the two new isotypic crystalline phases Sr4.2Ba2.8(BS3)4S and Ba7(BSe3)4Se. Both compounds consist of trigonal‐planar BQ3 (Q = S, Se) units, isolated Q2– anions and the corresponding counter‐ions. The two new chalcogenoborates were prepared in solid state reactions from the metal sulfides (selenides), amorphous boron and sulfur (selenium). Evacuated carbon coated silica tubes were used as reaction vessels since temperatures up to 870 K were applied. Sr4.2Ba2.8(BS3)4S and Ba7(BSe3)4Se crystallize in the monoclinic space group C2/c (no. 15) with a = 9.902(3) Å, b = 23.504(9) Å, c = 9.884(3) Å, β = 90.01(3)° and Z = 4 in the case of the thioborate, while for the selenoborate the lattice parameters a = 10.513(2) Å, b = 25.021(5) Å, c = 10.513(2) Å, β = 90.10(3)° were determined. X‐ray powder patterns are compared to calculated diffraction data obtained from single crystal X‐ray structure determination.  相似文献   

4.
Synthesis and Crystal Structure of Sr2Zn(OH)6 and Ba2Zn(OH)6 Crystallization from supersaturated sodium hydroxozincate solutions by adding solutions of alkali earth metal hydroxides yields crystals of Sr2Zn(OH)6 and Ba2Zn(OH)6. The X-ray structure determination on these crystals was successful including all hydrogen positions: Sr2Zn(OH)6: P21/n, Z = 2, a = 5.794(1) Å, b = 6.160(1) Å, c = 8.141(1) Å, b = 91.23(1)°, N(F ³° 2σ F) = 1127, N(Var.) = 53, R1/wR2 = 0.047/0.081Ba2Zn(OH)6: P21/n, Z = 2, a = 6.043(1) Å, b = 6.336(1) Å, c = 8.451(2) Å, b = 91.23(2)°, N(F ° 2σ F) = 1669, N(Var.) = 54, R1/wR2 = 0.029/0.067. Sr2Zn(OH)6 and Ba2Zn(OH)6 crystallize isotypic in a distorted Li2O structure type. Sr2+ resp. Ba2+ form a cubic primitive arrangement. Distorted octahedra of OH around Zn2+ fill therein alternating cubic gaps in an ordered way.  相似文献   

5.
Light‐yellow single crystals of the mixed‐valent mercury‐rich basic nitrate Hg8O4(OH)(NO3)5 were obtained as a by‐product at 85 °C from a melt consisting of stoichiometric amounts of (HgI2)(NO3)2·2H2O and HgII(OH)(NO3). The title compound, represented by the more detailed formula HgI2(NO3)2·HgII(OH)(NO3)·HgII(NO3)2·4HgIIO, exhibits a new structure type (monoclinic, C2/c, Z = 4, a = 6.7708(7), b = 11.6692(11), c = 24.492(2) Å, β = 96.851(2)°, 2920 structure factors, 178 parameters, R1[F2 > 2σ(F2)] = 0.0316) and is made up of almost linear [O‐HgII‐O] and [O‐HgI‐HgI‐O] building blocks with typical HgII‐O distances around 2.06Å and a HgI‐O distance of 2.13Å. The Hg22+ dumbbell exhibits a characteristic Hg‐Hg distance of 2.5079(7) Å. The different types of mercury‐oxygen units form a complex three‐dimensional network exhibiting large cavities which are occupied by the nitrate groups. The NO3? anions show only weak interactions between the nitrate oxygen atoms and the mercury atoms which are at distances > 2.6Å from one another. One of the three crystallographically independent nitrate groups is disordered.  相似文献   

6.
The new octadecanuclear Cu‐Ln complex, [Cu12Nd6(OH)24(betaine)16(NO3)3(H2O)10](NO3)[PF6]14·5H2O, was synthesized, which crystallizes in triclinic P1¯ space group, a = 18.649(6)Å, b = 20.363(7)Å, c = 19.865(7)Å, α = 116.61(2)°, β = 91.99(2)°, γ = 117.93(2)°, V = 5666(3)Å3. Its crystal structure features a [Cu12Nd6(OH)24(betaine)16(NO3)3(H2O)10]15+ core of pseudocubic Oh symmetry, with the six Nd ions positioned at the vertices of a regular octahedron and the twelve Cu ions located at the midpoints of the twelve octahedral edges. The Cu‐Nd metal framework may be viewed as a cuboctahedron, which is interconnected by twenty‐four μ3‐OH bridges that are each linked to one Nd ion and two Cu ions. In the centre of metal polyhedron, there is an encapsulated NO3 anion that exhibits a multi‐ coordinating mode.  相似文献   

7.
The synthesis and single crystal X‐ray structure determination are reported for the 2,2′ : 6′,2″‐terpyridine (= tpy) adduct of bismuth(III) nitrate. The hydroxide‐bridged dimer [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy)(η2‐NO3)2] with nine‐coordinate geometry about Bi was the only isolable product from all crystallization attempts in varying ratios of Bi(NO3) : terpy.; [(η2‐NO3)2(tpy)Bi(μ‐OH)2Bi(tpy) · (η2‐NO3)2] is triclinic, P 1, a = 7.941(8), b = 10.732(9), c = 11.235(9) Å; α = 63.05(1), β = 85.01(1), γ = 79.26(1)°, Z = 1, dimer, R = 0.058 for N0 = 2319.  相似文献   

8.
Reactions of phenanthroline (phen) and Er(NO3)3 · 5 H2O or Lu(NO3)3 · H2O in CH3OH/H2O yield [Ln2(phen)4(H2O)4(OH)2](NO3)4(phen)2 with Ln = Er ( 1 ), Lu ( 2 ). Both isostructural complex compounds crystallize in the triclinic space group P 1 (no. 2) with the cell dimensions: a = 11.257(2) Å, b = 11.467(2) Å, c = 14.069(2) Å, α = 93.93(2)°, β = 98.18(1)°, γ = 108.14(1)°, V = 1696.0(6) Å3, Z = 1 for ( 1 ) and a = 11.251(1) Å, b = 11.476(1) Å, c = 14.019(1) Å, α = 93.83(1)°, β = 98.27(1)°, γ = 108.27(1)°, V = 1689.0(3) Å3, Z = 1 for ( 2 ). The crystal structures consist of the hydroxo bridged dinuclear [Ln2(phen)4(H2O)4(OH)2]4+ complex cations, hydrogen bonded NO3 anions and π‐π stacking (phen)2 dimers. The rare earth metal atoms are coordinated by four N atoms of two phen ligands and four O atoms of two H2O molecules and two μ‐OH groups to complete tetragonal antiprisms. Via two common μ‐OH groups, two neighboring tetragonal antiprisms are condensed to a centrosymmetric dinuclear [Ln2(phen)4(H2O)4(OH)2]4+ complex cation. Based on π‐π stacking interactions and hydrogen bonding, the complex cations and (phen)2 dimers form 2 D layers parallel to (1 0 1), between which the hydrogen bonded NO3 anions are sandwiched. The structures can be simplified into a distorted CsCl structure when {[Ln2(phen)4(H2O)4(OH)2](NO3)4} and (phen)2 are viewed as building units.  相似文献   

9.
Polycrystalline anhydrous Hg2(NO3)2 was prepared by drying Hg2(NO3)2·2H2O over concentrated sulphuric acid. Evaporation of a concentrated and slightly acidified mercury(I) nitrate solution to which the same volumetric amount of pyridine was added, led to the growth of colourless rod‐like single crystals of Hg2(NO3)2. Besides the title compound, crystals of hydrous Hg2(NO3)2·2H2O and the basic (Hg2)2(OH)(NO3)3 were formed as by‐products after a crystallization period of about 2 to 4 days at room temperature. The crystal structure was determined from two single crystal diffractometer data sets collected at —100°C and at room temperature: space group P21, Z = 4, —100°C [room temperature]: a = 6.2051(10) [6.2038(7)]Å, b = 8.3444(14) [8.3875(10)]Å, c = 11.7028(1) [11.7620(14)]Å, ß = 93.564(3) [93.415(2)]°, 3018 [3202] structure factors, 182 [182] parameters, R[2 > 2σ(2)] = 0.0266 [0.0313]. The structure is built up of two crystallographically inequivalent Hg22+ dumbbells and four NO3 groups which form molecular [O2N‐O‐Hg‐Hg‐O‐NO2] units with short Hg‐O bonds. Via long Hg‐O bonds to adjacent nitrate groups the crystal packing is achieved. The Hg‐Hg distances with an average of d(Hg‐Hg) = 2.5072Å are in the typical range for mercurous oxo compounds. The oxygen coordination around the mercury dumbbells is asymmetric with four and six oxygen atoms as ligands for the two mercury atoms of each dumbbell. The nitrate groups deviate slightly from the geometry of an equilateral triangle with an average distance of d(N‐O) = 1.255Å.  相似文献   

10.
Colourless single crystals of [Hg(OH)](NO3)(H2O) were obtained by slow evaporation of an aqueous solution of Hg(NO3)2 and Bi(NO3)3. The crystal structure (orthorhombic, Pbca, Z = 8, a = 943.2(2), b = 697.6(1), c = 1349.0(2) pm, R1(all) = 0.0780) contains [Hg(OH)] = …OH–Hg–OH–Hg… zig zag chains (O–Hg–O angle: 168°, Hg–O–Hg angle: 112°, Hg–OH distance: 212 pm) to which one water molecule is attached loosely. The [Hg(OH)](H2O) chains are connected via bis‐monodentate‐bridging nitrate ions to corrugated layers that are stacked in the [001] direction. Hg2+ has an effective 2+2+2(+1) coordination.  相似文献   

11.
The new compound LiCd2(SeO3)2(OH) has been hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction and IR spectroscopy. It is built up from a network of edge‐ and vertex‐sharing pyramidal [SeO3]2— groups, distorted CdO6 octahedra, and CdO7 monocapped trigonal prisms. The cadmium‐centred groups form infinite columns, onto which Se atoms (as [SeO3]2— groups) are grafted. Cross‐linking between the columns results in a three‐dimensional framework which encapsulates [100] channels occupied by the tetrahedrally‐coordinated lithium cations. The H atom of the hydroxyl group appears to participate in a weak, bifurcated, hydrogen bond. Crystal data: LiCd2(SeO3)2(OH), Mr = 502.67, monoclinic, P21/c (No. 14), a = 5.8184 (3)Å, b = 10.2790 (5)Å, c = 11.5021 (5)Å, β = 90.446(1)°, V = 687.89 (9)Å3, Z = 4, R(F) = 0.021, wR(F2) = 0.046.  相似文献   

12.
The crystal structures of Na2Mg3(OH)2(SO4)3 · 4H2O and K2Mg3(OH)2(SO4)3 · 2H2O, were determined from conventional laboratory X‐ray powder diffraction data. Synthesis and crystal growth were made by mixing alkali metal sulfate, magnesium sulfate hydrate, and magnesium oxide with small amounts of water followed by heating at 150 °C. The compounds crystallize in space group Cmc21 (No. 36) with lattice parameters of a = 19.7351(3), b = 7.2228(2), c = 10.0285(2) Å for the sodium and a = 17.9427(2), b = 7.5184(1), c = 9.7945(1) Å for the potassium sample. The crystal structure consists of a linked MgO6–SO4 layered network, where the space between the layers is filled with either potassium (K+) or Na+‐2H2O units. The potassium‐bearing structure is isostructural to K2Co3(OH)2(SO4)3 · 2(H2O). The sodium compound has a similar crystal structure, where the bigger potassium ion is replaced by sodium ions and twice as many water molecules. Geometry optimization of the hydrogen positions were made with an empirical energy code.  相似文献   

13.
Single crystals of the hitherto unknown compound Hg2(OH)(NO3)·HgO were obtained unintentionally during hydrothermal phase formation experiments in the system Ag—Hg— As—O. Hg2(OH)(NO3)·HgO (orthorhombic, Pbca, Z = 8, a = 6.4352(8), b = 11.3609(14), c = 15.958(2) Å, 1693 structure factors, 83 parameters, R1[F2 > 2σ(F2)] = 0.0431) adopts a new structure type and is composed of two types of mercury‐oxygen zig‐zag‐chains running perpendicular to each other and of intermediate nitrate groups. One type of chains runs parallel [010] and consists of (Hg—Hg—OH) units with a typical Hg—Hg distance of 2.5143(10) Å for the mercury dumbbell, whereas the other type of chains runs parallel [100] and is made up of (O—Hg—O) units with short Hg—O distances of about 2.02Å. Both types of chains are concatenated by a common O atom with a slightly longer Hg—O distance of 2.25Å. The three‐dimensional assembly is completed by nitrate groups whose O atoms show Hg—O distances > 2.80Å. Weak hydrogen bonding between the OH group and one oxygen atom belonging to the nitrate group stabilizes this arrangement. Hg2(OH)(NO3)·HgO decomposes above 200 °C to HgO.  相似文献   

14.
The structure of [Co3(CN)2 {(OH)4} (NH3)8] [Co2(NO2)6 {(OH)2, NO2}] · H2O has been determined by X-ray methods. The compound crystallizes in the monoclinic space group C2h5–P21/n with a = 7.21, b = 12.38, c = 33.13 Å, β = 94°, Z = 4. The crystals contain trinuclear cations in which three Co(III) atoms are bound to two pairs of oxygen atoms. At the central Co atom there are two CN ligands in the cis position. The cation is of symmetry C2. The anion is found to be a binuclear Co(III) complex. The two Co atoms are bound to two OH and one NO2 groups.  相似文献   

15.
Seven rare-earth metal hydrogarnets Sr3[RE(OH)6]2 (RE = Sc, Y, Ho-Lu) were synthesized at about 200 °C starting from the respective RE2O3 and Sr(NO3)2 in a KOH hydroflux with a water-to-base ratio of 1.6. All seven hydrogarnets crystallize in the acentric variant (space group I4 3d) of the cubic garnet structure. The crystal structures of the hydrogarnets Sr3[RE(OH)6]2, the differences between both structural variants including a simple method to distinguish between them, and the crystal-chemical classification with respect to other known strontium hydrogarnets are discussed. The rare-earth hydrogarnets can be used as carbon-free precursors for magnetic oxides. Starting at about 300 °C, the hydrogarnets decompose in a two- or three-step dehydration to SrRE2O4 and SrO. The decomposition of Sr3[Sc(OH)6]2 follows a different mechanism and was studied by in-situ temperature-dependent powder X-ray diffraction up to 1000 °C. The final decomposition products were SrO and an unknown strontium scandium oxide, with an X-ray pattern similar to BaSc2O4. Magnetic measurements of the erbium and ytterbium hydrogarnets revealed paramagnetic behavior down to 1.8 K.  相似文献   

16.
Synthesis and Crystal Structures of α‐, β‐Ba3(PS4)2 and Ba3(PSe4)2 Ba3(PS4)2 and Ba3(PSe4)2 were prepared by heating mixtures of the elements at 800 °C for 25 h. Both compounds were investigated by single crystal X‐ray methods. The thiophosphate is dimorphic and undergoes a displacive phase transition at about 75 °C. Both modifications crystallize in new structure types. In the room temperature phase (α‐Ba3(PS4)2: P21/a; a = 11.649(3), b = 6.610(1), c = 17.299(2) Å, β = 90.26(3)°; Z = 4) three crystallographically independent Ba atoms are surrounded by ten sulfur atoms forming distorted polyhedra. The arrangement of the PS4 tetrahedra, isolated from each other, is comparable with the formation of the SO42? ions of β‐K2SO4. In β‐Ba3(PS4)2 (C2/m; a = 11.597(2), b = 6.727(1), c = 8.704(2) Å; β = 90.00(3)°; Z = 2) the PS4 tetrahedra are no more tilted along [001], but oriented parallel to each other inducing less distorted tetrahedra and polyhedra around the Ba atoms, respectively. Ba3(PSe4)2 (P21/a; a = 12.282(2), b = 6.906(1), c = 18.061(4) Å; β = 90.23(3)°; Z = 4) is isotypic to α‐Ba3(PS4)2 and no phase transition could be detected up to about 550 °C.  相似文献   

17.
In the course of investigations relating to magnesia oxysulfate cement the basic magnesium salt hydrate 3Mg(OH)2 · MgSO4 · 8H2O (3–1–8 phase) was found as a metastable phase in the system Mg(OH)2‐MgSO4‐H2O at room temperature (the 5–1–2 phase is the stable phase) and was characterized by thermal analysis, Raman spectroscopy, and X‐ray powder diffraction. The complex crystal structure of the 3–1–8 phase was determined from high resolution laboratory X‐ray powder diffraction data [space group C2/c, Z = 4, a = 7.8956(1) Å, b = 9.8302(2) Å, c = 20.1769(2) Å, β = 96.2147(16)°, and V = 1556.84(4) Å3]. In the crystal structure of the 3–1–8 phase, parallel double chains of edge‐linked distorted Mg(OH2)2(OH)4 octahedra run along [–110] and [110] direction forming a pattern of crossed rods. Isolated SO4 tetrahedra and interstitial water molecules separate the stacks of parallel double chains.  相似文献   

18.
A new iron basic salt, Fe4(OH)11NO3·2H2O, has been prepared by partially hydrolyzing a solution of Fe(NO3)3·9H2O with urea. The X-ray powder diffraction pattern has been indexed within a monoclinic cella=9.99(3) ?,b=9.48(2) ?,c=3.074(3) ? andβ=90.57(1)°. Thermal decomposition reactions in still air and nitrogen flow have been studied by DTA and TG analysis, and the intermediate and final products have been characterized by X-ray diffraction and IR spectroscopy. When this material is thermally decomposed in an X-ray high temperature diffraction chamber, pure iron is formed at 900 °C together with Fe(III) and Fe(II) oxides.
Zusammenfassung Mittels Hydrolyse einer L?sung von Fe(NO)3)3·9H2O mit Karbamid wurde das neue basische Eisensalz Fe4(OH)11NO3·2H2O dargestellt. Aus einem R?ntgenpulververfahren resultierena=9,55(3) ?,b=9,48(2) ?,c=3,074(3) ? undβ=90,57(1)° für eine monozyklische Zelle. Mittels DTA- und TG-Untersuchungen wurden die thermischen Zersetzungsreaktionen an Luft und im Stickstoffflu? untersucht und die Zwischen- und Endprodukte mit r?ntgendiffraktionsverfahren und IR-Spectroskopie charakterisiert. Bei einer thermischen Zersetzung dieses Stoffes in einer Hochtemperatur-r?ntgendiffraktionskammer wird bei 900 °C elementares Eisen zusammen mit Fe(II)- und Fe(III)-oxiden gebildet.

Резюме Частичным гидролизо м раствора соли Fe(NO3)3 · 9H2O с мочевиной получен а новая основная соль Fe4(OH)11NO3 · 2Н2О, для которой методо м порошкового рентген оструктурного анализа была установ лена моноклинная стр уктура с параметрами ячейкиа=9,55(3) А,b=9,48(2) ?,c=3,074(3) ? иβ=90,57(1)°. Термиче ское разложение соли изучено методом ДТА и ТГ в динамическо й атмосфере воздуха и азота, а образующиеся промеж уточные и конечные продукты ре акции были охарактер изованы рентгенофазовым ана лизом и ИК спектроскопией. ˉПри термическом разложе нии соли в высокотемпературно й рентгено-диффракци онной камере при 900° образует ся чистое железо вмес те с оксидами двух- и трехвалентного желе за.


The authors are greateful to Dr. R. M. Rojas for his helpful suggestions.  相似文献   

19.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

20.
Our systematic studies on quaternary thioborates containing both a comparably small alkali metal ion and a large alkaline earth cation lead to the two new crystalline phases KBa4(BS3)3 and K4Ba11(BS3)8S. The former consists of isolated BS3 units and the corresponding counter‐ions while in the latter BS33– and S2– anions coexist. In both compounds boron is found in a trigonal‐planar coordination, in the case of K4Ba11(BS3)8S the additional sulfide anions are located inside an octahedron built of six barium cations. The two compounds were prepared in solid state reactions from the metal sulfides, amorphous boron and sulfur. Evacuated carbon coated silica tubes were used as reaction vessels since temperatures up to 870 K were applied. KBa4(BS3)3 crystallizes in the monoclinic space group C 2/c (no. 15) with a = 14.299(6) Å, b = 8.808(3) Å, c = 13.656(5) Å, β = 98.72(4)°, and Z = 4, while for K4Ba11(BS3)8S the trigonal space group R 3 c (no. 167) was found with a = 18.146(3) Å, c = 25.980(7) Å, and Z = 6. X‐ray powder patterns are compared to calculated diffraction data obtained from single crystal X‐ray structure determination, in the case of K4Ba11(BS3)8S vibrational spectra were recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号