首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
《Comptes Rendus Chimie》2008,11(3):307-316
Iron and cobalt complexes are a new family of catalysts for ethylene oligomerization and polymerization. The extensive researches on bis(imino)pyridyl metal complexes have been carried out with the aim of synthesizing their derivatives and finding suitable reaction parameters for the optimum activity. Beyond the modification works of bis(imino)pyridyl metal complexes, several alternative models with similar coordination sphere have been developed in our group. This review article describes our experiences in innovating new models of iron and cobalt complexes as catalysts for ethylene oligomerization and polymerization.  相似文献   

2.
孙文华 《高分子科学》2010,28(3):299-304
<正>The discovery of highly active 2,6-bis(imino)pyridyl iron and cobalt complexes provided a milestone of latetransition metal catalysts for ethylene oligomerization and polymerization with being currently investigated for the scale-up process.The crucial problems are remaining in the catalytic systems:the catalytic systems targeting ethylene polymerization produce more oligomers at elevated reaction temperatures,however,there is a recognizable amount of high-molecular-weight polyethylene remained in the modified catalytic system for the oligomerization process.Beyond the modification of bis(imino)pyridyl metal complexes,several alternative procatalysts' models have been developed in our group.This review highlighted the achievements in exploring new iron and cobalt complexes with tridentate NNN ligands as procatalysts for ethylene oligomerization and polymerization.  相似文献   

3.
Heterogeneous‐layered silicate‐immobilized 2,6‐bis(imino)pyridyl iron (II) dichloride/MMAO catalysts, in which the active polymerization species are intercalated within sodium‐ and organomodified‐layered silicate galleries, were prepared for producing hybrid exfoliated polyethylene (PE) nanocomposites by means of in situ polymerization. The inorganic filler was first treated with modified‐methylaluminoxane (MMAO) to produce a supported cocatalyst: MMAO reacts with silicates replacing most of the organic surfactant, thus modifying the original crystallographic clay order. MMAO anchored to the nanoclay was able to activate polymerization iron complexes initiating the polymer growth directly from the filler lamellae interlayer. The polymerization mechanism taking place in between the montmorillonite lamellae separates the layers, thus promoting deagglomeration and effective clay dispersion. Transmission electron microscopy revealed that in situ polymerization by catalytically active iron complexes intercalated within the lower organomodified clay led to fine dispersion and high exfoliation extent. The intercalated clay catalysts displayed a longer polymerization life‐time and brought about ethylene polymerization more efficiently than analogous homogeneous systems. PEs having higher molecular masses were obtained. These benefits resulted to be dependent more on the filler nature than on the ligand environment around the iron metal center and the experimental synthetic route. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 548–564, 2009  相似文献   

4.
Data on ethylene polymerization over supported LFeCl2/MgCl2 catalysts {L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl]pyridyl} containing AlR3 (R = Me, Et, i‐Bu, or n‐Oct) as an activator are presented. These catalysts are highly active (100–300 kg of polyethylene/g of Fe h bar of C2H4) and stable in ethylene polymerization at 70–80 °C. Data on the effects of the iron content, AlR3 type, Al(i‐Bu)3 concentration, and hydrogen presence on the catalyst activity are presented. The molecular structure of polyethylene produced with these catalysts (including the molecular masses, molecular mass distribution, branching, and number of C?C bonds) has been studied; data on the effects of AlR3 and hydrogen on the molecular structure are presented. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2128–2133, 2005  相似文献   

5.
The effects of polymerization temperature, polymerization time, ethylene and hydrogen concentration, and effect of comonomers (hexene‐1, propylene) on the activity of supported catalyst of composition LFeCl2/MgCl2‐Al(i‐Bu)3 (L = 2,6‐bis[1‐(2,6‐dimethylphenylimino)ethyl] pyridyl) and polymer characteristics (molecular weight (MW), molecular‐weight distribution (MWD), molecular structure) have been studied. Effective activation energy of ethylene polymerization over LFeCl2/MgCl2‐Al(i‐Bu)3 has a value typical of supported Ziegler–Natta catalysts (11.9 kcal/mol). The polymerization reaction is of the first order with respect to monomer at the ethylene concentration >0.2 mol/L. Addition of small amounts of hydrogen (9–17%) significantly increases the activity; however, further increase in hydrogen concentration decreases the activity. The IRS and DSC analysis of PE indicates that catalyst LFeCl2/MgCl2‐Al(i‐Bu)3 has a very low copolymerizing ability toward propylene and hexene‐1. MW and MWD of PE produced over these catalysts depend on the polymerization time, ethylene and hexene‐1 concentration. The activation effect of hydrogen and other kinetic features of ethylene polymerization over supported catalysts based on the Fe (II) complexes are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5057–5066, 2007  相似文献   

6.
To reduce the simultaneous production of insoluble polymers during the bis(imino)pyridyl iron‐catalyzed ethylene oligomerization, in this study, p‐BrPhOH (4‐bromophenol) has been chosen as the most optimal modifier for the production of linear α‐olefins. It is found that the polymer share in the total products is largely reduced with the use of p‐BrPhOH as the modifier. The catalytic system also possesses a high activity with the liquid production maintained high level of linearity. Moreover, the introduction of p‐BrPhOH promoted the high‐temperature stability of the catalytic system, leading to the enhanced oligomerization activity as the catalytic system can catalyze ethylene oligomerization at higher temperatures. A characterization of the catalytic system with electron paramagnetic resonance shows that introduction of p‐BrPhOH significantly inhibits the formation of ferric ions, which can be the main active centers responsible for generating undesired insoluble polymers, thus this can largely retard the production of insoluble polymers during ethylene oligomerization.  相似文献   

7.
Starlike polystyrenes composed of a microgel core and arms terminated with benzophenone groups were used as organic supports for a tridentate bis(imino)pyridinyliron catalyst for ethylene polymerization in the presence of trimethylaluminum as a cocatalyst. The microgels were synthesized by the atom transfer radical polymerization of styrene initiated by 4‐(1‐bromoethyl)‐benzophenone, with divinylbenzene as the crosslinker. The bromine polystyrene chain ends prevented the ethylene polymerization reaction and had to be removed. This was readily achieved with Cu0 together with dodecanethiol as a transfer agent. When used as supports in the presence of trimethylaluminum and 2,6‐bis[1‐2,6(diisopropylphenyl)imino]ethylpyridynyl iron, these bromine‐free, functionalized polystyrene stars enabled the production of polyethylene beads of a spherical morphology and high bulk density with a catalytic activity similar to that under homogeneous reaction conditions. Moreover, the molar mass distribution of the polyethylene was narrow, suggesting limited transfer to trimethylaluminum. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6997–7007, 2006  相似文献   

8.
Ethylene polymerizations carried out with various bis(imino)pyridyl iron, chromium and vanadium complexes immobilized on a MgCl2/AlRn(OEt)3−n support gave relatively broad polyethylene molecular weight distributions in the case of iron, but high molecular weight and a very narrow molecular weight distribution with vanadium, indicative of a single active species. The narrow MWD was confirmed by melt rheometry. Similar results were obtained after reaction of the bis(imino)pyridyl complex LVCl3 (6) with MeLi or AlEt3, where alkylation of the pyridine ring gives a complex L′VCl2 (7). In the case of chromium, a bimodal distribution was obtained, with evidence of incomplete catalyst immobilization. The polyethylene molecular weights obtained with the iron complexes were strongly dependent on the substituents in the bis(imino)pyridyl ligand, and were somewhat higher than have been obtained in homogeneous polymerization. In contrast, the molecular weights obtained with the bis(imino)pyridyl chromium and vanadium complexes were much higher that those previously obtained under homogeneous conditions. In all cases, the activities of the immobilized catalysts were higher than those found in homogeneous polymerization.  相似文献   

9.
 Bis(imino)pyridyl Fe(II) complexes are important catalysts in ethylene oligomerization for preparing α-olefins. The metal net charge-activity relationship of bis(imino)pyridyl Fe(II) complexes was investigated by molecular mechanics (MM) and net charge equilibration (QEq) method with modified Dreiding force field. It was found that metal net charge was in reverse ratio to ethylene oligomerization activity. Electron-donor substituents with less steric hindrance to the central metal were favorable to Fe complex activity. Metal net charge-activity relationship could be used to assist the design of new Fe oligomerization catalysts with higher activity.  相似文献   

10.
A surface science model for a silica supported bis(imino)pyridyl iron complexes is applied to reveal the surface chemistry of these heterogeneous polymerization catalysts. The polymerization activity of these models and the molecular weight distribution of the resulting polymer are comparable to similar catalysts supported on amorphous silica. The catalyst deactivates partially during the first hour of ethylene polymerization. Based on photoelectron spectroscopy (XPS) we attribute this deactivation to iron extrusion by the aluminium alkyl activator.  相似文献   

11.
The effect of type and concentration of external donor and hydrogen concentration on oligomer formation and chain end distribution were studied. Bulk polymerization of propylene was carried out with two different Ziegler‐Natta catalysts at 70 °C, one a novel self‐supported catalyst (A) and the other a conventional MgCl2‐supported catalyst (B) with triethyl aluminum as cocatalyst. The external donors used were dicyclopentyl dimethoxy silane (DCP) and cyclohexylmethyl dimethoxy silane (CHM). The oligomer amount was shown to be strongly dependent on the molecular weight of the polymer. Catalyst A gave approximately 50 % lower oligomer content than catalyst B due to narrower molecular weight distribution in case of catalyst A. More n‐Bu‐terminated chain ends were found for catalyst A indicating more frequent 2,1 insertions. Catalyst A also gave more vinylidene‐terminated oligomers, suggesting that chain transfer to monomer, responsible for the vinylidene chain ends, was a more important chain termination mechanism for this catalyst, especially at low hydrogen concentration. Low site selectivity, due to low external donor concentration or use of a weak external donor (CHM), was also found to increase formation of vinylidene‐terminated oligomers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 351–358, 2010  相似文献   

12.
Free‐radical copolymerizations of vinyl acetate (VAc = M1) and other vinyl esters (= M2) including vinyl pivalate (VPi), vinyl 2,2‐bis(trifluoromethyl)propionate (VF6Pi), and vinyl benzoate (VBz) with fluoroalcohols and tetrahydrofuran (THF) as the solvents were investigated. The fluoroalcohols affected not only the stereochemistry but also the polymerization rate. The polymerization rate was higher in the fluoroalcohols than in THF. The accelerating effect of the fluoroalcohols on the polymerization was probably due to the interaction of the solvents with the ester side groups of the monomers and growing radical species. The difference in the monomer reactivity ratios (r1, r2) in THF and 2,2,2‐trifluoroethanol was relatively small for all reaction conditions and for the monomers tested in this work, whereas r1 increased in the VAc‐VF6Pi copolymerization and r2 decreased in the VAc‐VPi copolymerization when perfluoro‐tert‐butyl alcohol was used as the solvent. These results were ascribed to steric and monomer‐activating effects due to the hydrogen bonding between the monomers and solvents. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 220–228, 2000  相似文献   

13.
Summary: The bis(imino)pyridyl vanadium(III ) complex [VCl3{2,6‐bis[(2,6‐iPr2C6H3)NC(Me)]2(C5H3N)}] activated with different aluminium cocatalysts (AlEt2Cl, Al2Et3Cl3, MAO) promotes chemoselective 1,4‐polymerization of butadiene with activity values higher than classical vanadium‐chloride‐based catalysts. The polymer structure depends on the nature of the cocatalyst employed. The MAO‐activated complex was also found to be active in ethylene‐butadiene copolymerization, producing copolymers with up to 45 mol‐% of trans‐1,4‐butadiene. Crystalline polyethylene and trans‐1,4‐poly(butadiene) segments were detected in these copolymers by DSC and 13C NMR spectroscopy.

  相似文献   


14.
Summary: A well‐defined flat model of a supported homogeneous polyolefin catalyst is prepared on the basis of an immobilized bis(imino)pyridyl iron complex on a super flat silica surface. The amount of supported catalyst precursor is quantified using XPS. This model catalyst remains active over extended periods, i.e., an average activity of 0.25 × 103 kg PE · (molCat · h · bar)−1 is obtained for 24 h of ethylene polymerization. The morphology of the nascent polyethylene film is investigated by SEM.

A side‐view SEM image of the PE produced from the supported bis(imino)pyridyl Fe catalyst.  相似文献   


15.
Vinyl acetate and vinyl chloroacetate were copolymerized in the presence of a bis(trifluoro‐2,4‐pentanedionato)cobalt(II) complex and 2,2′‐azobis(4‐methoxy‐2,4‐dimethylvaleronitrile) at 30 °C, forming a cobalt‐capped poly(vinyl acetate‐co‐vinyl chloroacetate). The addition of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy after a certain degree of copolymerization was reached afforded 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐terminated poly(vinyl acetate‐co‐vinyl chloroacetate) (PVOAc–MI; number‐average molecular weight = 31,000, weight‐average molecular weight/number‐average molecular weight = 1.24). A 1H NMR study of the resulting PVOAc–MI revealed quantitative terminal 2,2,6,6‐tetramethyl‐1‐piperidinyloxy functionality and the presence of 5.5 mol % vinyl chloroacetate in the copolymer. The atom transfer radical polymerization (ATRP) of styrene (St) was studied with ethyl chloroacetate as a model initiator and five different Cu‐based catalysts. Catalysts with bis(2‐pyridylmethyl)octadecylamine (BPMODA) or tris(2‐pyridylmethyl)amine (TPMA) ligands provided the highest initiation efficiency and best control over the polymerization of St. The grafting‐from ATRP of St from PVOAc–MI catalyzed by copper complexes with BPMODA or TPMA ligands provided poly(vinyl acetate)‐graft‐polystyrene copolymers with relatively high polydispersity (>1.5) because of intermolecular coupling between growing polystyrene (PSt) grafts. After the hydrolysis of the graft copolymers, the cleaved PSt side chains had a monomodal molecular weight distribution with some tailing toward the lower number‐average molecular weight region because of termination. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 447–459, 2007  相似文献   

16.
A kind of novel bridged nonmetallocene catalysts was synthesized by the treatment of N,N‐imidazole and N,N‐phenylimidazole with n‐BuLi, and MCl4 (M = Ti, Zr) in THF. Those catalysts were performed for ethylene polymerization after activated by methylaluminoxane (MAO). The effects of polymerization temperature, Al/M ratio, pressure of monomer, and concentration of catalysts on ethylene polymerization behaviors were investigated in detail. Those results revealed that the catalyst system was favorable for ethylene polymerization with high catalytic activity. The polymer was characterized by 13C NMR, WAXD, GPC, and DSC. The result confirmed that the obtained polyethylene featured broad molecular weight distribution around 20, linear structure, and relative low melting temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 33–37, 2008  相似文献   

17.
Homogeneous tandem catalysis of the bis(diphenylphoshino)amine‐chromium oligomerization catalyst with the metallocenes Ph2C(Cp)(9‐Flu)ZrCl2 and rac‐EtIn2ZrCl2, is discussed. GC, CRYSTAF, and 13C NMR analysis of the products obtained from reactions at constant temperatures show that during tandem catalysis, α‐olefins, mainly 1‐hexene and 1‐octene, are produced from ethylene by the oligomerization catalyst and subsequently built into the polyethylene chain. At 40 °C the Cr/PNP catalyst acts as a tetramerization catalyst while the polymerization catalyst activity is low. Copolymerization of ethylene and the in situ produced α‐olefins have also been carried out by increasing the temperature from 40 °C, where primarily oligomerization takes place, to above 100 °C, where polymerization becomes dominant. The melting temperature of the polymer is dependent on the catalyst and cocatalyst ratios as well as on the temperature gradient followed during the reaction, while the presence of the oligomerization catalyst reduces the activity of the polymerization catalyst. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6847–6856, 2006  相似文献   

18.
Data on ethylene polymerization on homogeneous and supported catalysts based on 2,6-bis(imino)pyridyl Fe(II) complexes activated by trialkylaluminums are considered (activity, the molecular-weight characteristics of polymers, the number of active sites, and the propagation rate constants). Unlike homogeneous systems, the supported catalysts prepared with the use of various carriers (SiO2, Al2O3, and MgCl2) exhibited high stability and activity at 70–80°C and produced high-molecular-weight polyethylene with a broad molecular-weight distribution (MWD). The molecular weights and MWDs of polymers and the propagation rate constant depended on the nature of the carrier only slightly. The reasons for an unusual effect of an increase in the activity of the supported catalysts in ethylene polymerization in the presence of hydrogen are discussed.  相似文献   

19.
Unique features of earth‐abundant transition‐metal catalysts are reviewed in the context of catalytic carbon–carbon bond‐forming reactions. Aryl‐substituted bis(imino)pyridine iron and cobalt dihalide compounds, when activated with alkyl aluminum reagents, form highly active catalysts for the polymerization of ethylene. Open‐shell iron and cobalt alkyl complexes have been synthesized that serve as single‐component olefin polymerization catalysts. Reduced bis(imino)pyridine iron and cobalt dinitrogen compounds have also been discovered that promote the unique [2+2] cycloaddition of unactivated terminal alkenes. Studies of the electronic structure support open‐shell intermediates, a deviation from traditional strong‐field organometallic compounds that promote catalytic C−C bond formation.  相似文献   

20.
New micelle‐like organic supports for single site catalysts based on the self‐assembly of polystyrene‐b‐poly(4‐vinylbenzoic acid) block copolymers have been designed. These block copolymers were synthesized by sequential atom transfer radical polymerization (ATRP) of styrene and methyl 4‐vinylbenzoate, followed by hydrolysis. As evidenced by dynamic light scattering, self‐assembly in toluene that is a selective solvent of polystyrene, induced the formation of micelle‐like nanoparticles composed of a poly(4‐vinylbenzoic acid) core and a polystyrene corona. Further addition of trimethylaluminium (TMA) afforded in situ MAO‐like species by diffusion of TMA into the core of the micelles and its subsequent reaction with the benzoic acid groups. Such reactive micelles then served as nanoreactors, MAO‐like species being efficient activators of 2,6‐bis[1‐{(2,6‐diisopropylphenyl)imino}ethyl]pyridinyl iron toward ethylene polymerization. These new micelle‐like organic supports enabled the production of polyethylene beads with a spherical morphology and a high bulk density through homogeneous‐like catalysis. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 197–209, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号