首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The Novel cis‐[Bi3I12]3?‐Anion in Tri(n‐butyl)methylammoniumdodecaiodo‐tribismutate By reaction of equivalent amounts of BiI3, KI and I2 in [N(CH3) (n‐C4H9)3][N(SO2CF3)2] as Ionic Liquid, transparent reddish crystals with the composition [N(CH3)(n‐C4H9)3]3[Bi3I12] are formed. Concerning to X‐ray diffraction investigations based on single crystals as well as powders, [N(CH3)(n‐C4H9)3]3[Bi3I12] crystallizes monoclinic (P21/c; a = 2383.0(5); b = 1241.0(3); c = 2493.0(5) pm; β = 97.50(3)°; Z = 4). The anion consists of distorted (BiI6)‐octahedra, which are face‐shared via cis‐oriented octahedral faces. With the cis‐[Bi3I12]3?‐anion such a connectivity is firstly described.  相似文献   

2.
Bright red crystals of [Mn(H2O)6][BiI4]2 · 2H2O are obtained from a solution of MnI2, BiI3, and I2 in absolute ethanol, which is exposed to humid air. Reversible dehydratization sets in at about 50 °C. Added water decomposes the hydrate by irreversible precipitation of BiOI. The optical bandgap is about 1.9(1) eV. X‐ray diffraction on a single‐crystal revealed a monoclinic lattice (space group P21/c) with a = 760.39(4) pm, b = 1315.6(1) pm, c = 1398.37(7) pm, and β = 97.438(4)°. In the crystal structure zigzag chains of edge‐sharing [BiI2/1I4/2] octahedra and linear strings of H2O‐bridged [Mn(H2O)6]2+ octahedra run parallel [100].  相似文献   

3.
Synthesis and Crystal Structures of (Ph4P)4[Bi8I28], (nBu4N)[Bi2I7], and (Et3PhN)2[Bi3I11] – Bismuth Iodo Complexes with Isolated and Polymeric Anions Solutions of BiI3 in methanol react with NaI and (nBu4N)(PF6) or (Et3NPh)(PF6) to form anionic bismuth iodo complexes (nBu4N)[Bi2I7] 1 and (Et3PhN)2[Bi3I11] 2 . In 1 Bi4I16 units, and in 2 Bi6I24 units are linked by common I-atoms to onedimensional infinite chains. Reaction of BiI3 with (Ph4P)(PF6) in methanol yields (Ph4P)4[Bi8I28] 3 . The anions of 1–3 consist of edge-sharing BiI6 octahedra. (nBu4N)[Bi2I7] 1 : Space group I2/m (No. 13), a = 1 082.3(5), b = 2 597.1(13), c = 1 206.1(6) pm, β = 93.17(2)°, V = 3 385(3) · 106 pm3; (Et3PhN)2[Bi3I11] 2 : Space group P1 (No. 2), a = 1 283.5(6), b = 1 345.9(7), c = 1 546.3(8) pm, α = 83.87(2), β = 74.24(2), γ = 68.26(2)°, V = 2 388(2) · 106 pm3; (Ph4P)4[Bi8I28] 3 : Space group P1 (No. 2), a = 1 329.3(4), b = 1 337.0(4), c = 2 193.1(5) pm, α = 104.20(2), β = 99.73(2), γ = 100.44(2)°, V = 3 622(2) · 106 pm3.  相似文献   

4.
Thallium sesquibromide Tl2Br3 is dimorphic. Scarlet coloured crystals of α‐Tl2Br3 were obtained by reactions of aqueous solutions of TlBr3 and Tl2SO4 in agarose gel. In case of rapid crystallisation of hydrous TlBr3/TlBr solutions and from TlBr/TlBr2 melts ß‐Tl2Br3 is formed as scarlet coloured, extremely thin lamellae. The crystal structures of both forms are very similar and can be described as mixed‐valence thallium(I)‐hexabromothallates(III) Tl3[TlBr6]. In the monoclinic unit cell of α‐Tl3[TlBr6] (a = 26.763(7) Å; b = 15.311(6) Å; c = 27.375(6) Å; β = 108.63(2)°, Z = 32, space gr. C2/c) the 32 TlIII‐cations are found in strongly distorted octahedral TlBr6 groups. The 96 TlI cations are surrounded either by four or six TlBr6 groups with contacts to 8 or 9 Br neighbors. Crystals of β‐Tl3[TlBr6] by contrast show almost hexagonal metrics (a = 13.124(4) Å, b = 13.130(4) Å, c = 25.550(7) Å, γ = 119.91(9)°, Z = 12, P21/m). Refinements of the parameters revealed structural disorder of TlBr6 units, possibly resulting from multiple twinning. Both structures are composed of Tl2[TlBr6] and Tl4[TlBr6]+ multilayers, which alternate parallel (001). The structural relationships of the complicated structures of α‐ and β‐Tl3[TlBr6] to the three polymorphous forms of Tl2Cl3 as well as to the structures of monoclinic hexachlorothallates M3TlCl6 (M = K, Rb) and the cubic elpasolites are discussed.  相似文献   

5.
Bi37InBr48: a Polar Subhalide with Bi95+ Polycations, Complex Bromobismuthate(III) Anions [Bi3Br13]4— and [Bi7Br30]9—, and Pentabromoindate(III) Anions [InBr5]2— Black crystals of Bi37InBr48 were synthesized from bismuth, indium and BiBr3 by cooling stoichiometric melts from 570 K to 470 K. X‐ray diffraction on powders and single‐crystals revealed that the compound crystallizes with space group P 63 (a = 2262.6(4); c = 1305.6(2) pm). The Bi95+ polycations in the polar crystal structure have the shape of heavily distorted tri‐capped trigonal prisms with approximate Cs symmetry. The high complexity of the structure results from three coexisting types of anionic groups: Three edge‐sharing [BiBr6] octahedra constitute the trigonal bromobismuthate(III) anion [Bi3Br13]4—. Four [BiBr6] and three [BiBr5] polyhedra share common vertices to form the [Bi7Br30]9— hemi‐sphere, in which the trigonal bipyramid of the pentabromoindat(III) ion [InBr5]2— is embedded.  相似文献   

6.
On Thallium(I)-oxochloromolybdates: Synthesis and Crystal Structures of Tl[MoOCl4(NCCH3)], Tl[Mo2O2Cl7], and Tl2[Mo4O4Cl14] and the Structure of Tl2[MoCl6] Black crystals of Tl2[MoCl6] are formed in the reaction of TlCl with MoOCl3 in a sealed evacuated glass ampoule at 350 °C. The crystal structure analysis shows that Tl2[MoCl6] (cubic, Fm m, a = 986.35(7) pm) adopts the K2[PtCl6] structure with a Mo–Cl bond length of 236.6 pm. Tl[MoOCl4(NCCH3)] was obtained by the reaction of TlCl with MoOCl3 in acetonitrile in form of yellow, moisture sensitive crystals. The structure (orthorhombic, Cmcm, a = 746.0(1), b = 1463.8(3), c = 857.3(2) pm) is built of Tl+ cations and octahedral [MoOCl4(NCCH3)] anions in which the acetonitrile ligand is bound in trans position to the oxygen. The reaction of TlCl and MoOCl3 in dichloromethane yields Tl[Mo2O2Cl7] and Tl2[Mo4O4Cl14] as green moisture sensitive crystals. The structure of Tl[Mo2O2Cl7] (orthorhombic, Pmmn, a = 694.3(1), b = 951.9(2), c = 904.7(1) pm) consists of Tl+ cations and dinuclear [Mo2O2Cl7] anions, with two equidistant chlorine bridges of 248.2 and one longer chlorine bridge of 265.7 pm. The oxygen atoms are located in the trans positions of the longer chloro bridge. The structure of Tl2[Mo4O4Cl14] (triclinic, P1¯, a = 692.8(1), b = 919.6(1), c = 998.9(1) pm, α = 104.94(1)°, β = 90.31(1)°, γ = 108.14(1)°) is build of Tl+ cations and [Mo4O4Cl14]2– anions which form tetramers of distorted octahedral, edgesharing (MoOCl5) units with chlorine atoms in the bridging positions. The oxygen atoms are located in the trans positions of the longest chlorine bridges.  相似文献   

7.
Cs10Tl6TtO4 (Tt = Si, Ge) and Cs10Tl6SnO3 were synthesized by the reaction of appropriate starting materials at 623–673 K, followed by fast cooling or quenching to room temperature, in arc‐welded tantalum ampoules. According to single‐crystal X‐ray analyses, the compounds crystallize in new structure types (Cs10Tl6TtO4 (Tt = Si, Ge), P21/c and Cs10Tl6SnO3, Pnma), consisting of [Tl6]6– clusters, which can be characterized as distorted octahedra compressed along one of the fourfold axes of an originally unperturbed octahedron, and [SiO4]4–, [GeO4]4– or [SnO3]4– anions. The oxotetrelate thallides can be regarded as “double salts”, which consist of Cs6Tl6 on one side and respective oxosilicates, ‐germanates and ‐stannates on the other, showing almost not any direct interaction between the two anionic moieties, as might be expressed e.g. by the formula [Cs6Tl6][Cs4SiO4]. In contrast to the silicon and germanium compounds, where the oxidation state of the tetrel atom is unambiguously 4+, for the threefold coordinated tin atom in Cs10Tl6SnO3 an oxidation state of 2+ has to be assumed. Thus, the latter reveal further evidence that the so called “hypoelectronic” [Tl6]6– cluster does not require additional electrons and is intrinsically stable. The distortion of [Tl6]6– can be understood in terms of the Jahn–Teller theorem. According to magnetic measurements all title compounds are diamagnetic.  相似文献   

8.
Synthesis and Crystal Structure of [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], and (Ph4P)4[Bi6I22] Solutions of BiI3 in THF or methanol react with MI (M = Li, Na) to form polynuclear iodo complexes of bismuth. The syntheses and results of X-ray structure analyses of compounds [Li(thf)4]2[Bi4I14(thf)2], [Li(thf)4]4[Bi5I19], [Na(thf)6]4[Bi6I22] and (Ph4P)4[Bi6I22] are described. The anions of these compounds consist of edge-sharing BiI6 and BiI5(thf) octahedra. The Bi atoms lie in a plane and are coordinated by bridging and terminal I atoms and by THF ligands in a distorted octahedral fashion. [Li(thf)4]2[Bi4I14(thf)2]: Space group P1 (No. 2), a = 1 159.9(6), b = 1 364.6(7), c = 1 426.5(7) pm, α = 114.05(3), β = 90.01(3), γ = 100.62(3)°. [Li(thf)4]4[Bi5I19]: Space group P21/n (No. 14), a = 1 653.0(9), b = 4 350(4), c = 1 836.3(13) pm, β = 114.70(4)°. [Na(thf)6]4[Bi6I22]: Space group P21/n (No. 14), a = 1 636.4(3), b = 2 926.7(7), c = 1 845.8(4) pm, β = 111.42(2)°. (Ph4P)4[Bi6I22]: Space group P1 (No. 2), a = 1 368.6(7), b = 1 508.1(9), c = 1 684.9(8) pm, α = 98.28(4), β = 95.13(4), γ = 109.48(4)°.  相似文献   

9.
(H3O)3Sb2Br9 [trihydroxonium enneabromidodiantimonate(III)] is the first representative of the M3E2X9 family (M = cation, E = Sb and Bi, and X = Br and I) with oxonium cations. The metastable compound was obtained in trace amounts from a solution of CsBr and SbBr3 in concentrated aqueous HBr. Single crystals were isolated from the mother liquor and investigated by single‐crystal X‐ray diffraction at 100 K. (H3O)3Sb2Br9 crystallizes with the Tl3Bi2I9 structure type, which is a distorted defect variant of cubic perovskite. The crystal structure comprises characteristic 2[SbBr3Br3/2] double layers of corner‐sharing SbBr6 octahedra with a [001] stacking direction. Due to the small size of the H3O+ cation and O—H…Br hydrogen bonding, the octahedra are tilted.  相似文献   

10.
Three salts containing different iodobismuthate anions have been synthesized. [(CH3)2NH2]3[BiI6] was prepared by oxidation of bismuth by iodine in N,N‐dimethylformamide. [(CH3)2NH2]3[BiI6] crystallizes in the space group with a = 30.760(3) Å and c = 8.8039(5) Å and contains monomeric [BiI6]3? anions. The hydrate Na4[Bi2I10] · 14H2O was prepared by the oxidation of bismuth using iodine in acetonitrile in the presence of NaI. Na4[Bi2I10] · 14H2O crystallizes in the space group C2/m with a = 12.875(2) Å, b = 16.177(2) Å, c = 9.904(2) Å and β = 106.57(6)°. The structure contains dimeric [Bi2I10]4? anions and rows of sodium ions, with bridging water molecules. The hydrate [Na{(CH3)2NCHO}2(H2O)]3[Bi2I9] was prepared by dissolution of Na4[Bi2I10] · 14H2O in N,N‐dimethylformamide and crystallizes in the space group with a = 13.2309(13) Å, b = 13.3791(14) Å, c = 18.722(2) Å, α = 70.338(9)°, β = 72.651(9)° and γ = 62.183(5). The structure contains dimeric [Bi2I9]3? anions and cationic polymers, equation/tex2gif-stack-1.gif[Na{(CH3)2NCHO}2(H2O)]+.  相似文献   

11.
Syntheses, Crystal Structures, and Triple Twinning of the Cluster Trimers Bi2[PtBi6Br12]3 and Bi2[PtBi6I12]3 Melting reactions of Bi with Pt and BiX3 (X = Br, I) yield shiny black, air insensitive crystals of the subhalides Bi2[PtBi6X12]. Bi2[PtBi6Br12]3 crystallizes in the monoclinic space group C2/m with lattice parameters a = 1617.6(2) pm, b = 1488.5(1) pm, c = 1752.4(2) pm, and β = 110.85(4)°. Bi2[PtBi6I12]3 adopts the triclinic space group with pseudo‐monoclinic lattice parameters a = 1711.2(2) pm, b = 1585.1(1) pm, c = 1865.7(2) pm, and α = 90°, β = 111.15(4)°, γ = 90°. The two homoeotypic compounds consist of cuboctahedral [Pt?IIBiII6X?I12]2? clusters that are concatenated into linear trimers by BiIII atoms. The ordered distribution of BiIII atoms destroys the inherent threefold rotation axes in the packing of cluster anions. As a consequence of the pseudosymmetry the crystals are triple twinned along [201]. Due to different orientations of the cluster trimers there are two BiII···X inter‐cluster bridges per BiII atom in Bi2[PtBi6Br12]3 but only one bridge in Bi2[PtBi6I12]3. The structure of the iodine compound can be deduced from the NaCl structure type, leaving 37 of 96 atomic positions unoccupied. The arrangement of the cuboctahedral clusters follows the motif of a body‐centered cubic packing.  相似文献   

12.
Red shiny crystals of [Rb(dibenzopyridino‐18‐crown‐6)2]2(I3)(I5) were obtained from a dichloromethane/ethanol solution of RbI, I2 and dibenzopyridino‐18‐crown‐6. Triclinic, , a = 1494.3(1), b = 1534.1(1), c = 2412.9(2) pm, α = 76.95(1), β = 83.58(1), γ = 68.67(1)°, V = 5016.7(7) 106·pm3, Z = 2. The crystal structure consists of [Rb(dbp18c6)2]+ cations leaving suitable three‐dimensional channels for the linear I3 and V‐shaped I5 anions which are isolated from each other.  相似文献   

13.
Tl5SnF9 and Tl5TiF9: The First [Tl5F3]2+ Layers in Novel Thallium(I) Fluoridefluorometallates(IV) Tl5TiF9 and Tl5SnF9 were prepared via solid state reactions from mixed powders of the TlF and SnF4 or TiF4, respectively, in platinum crucibles under Ar (573 K). Both fluorides are colourless, transparent and extremely hygroscopic. The compounds Tl5MF9 (M = Sn, Ti) crystallize in a new structure type in Pbam (Nr. 55) with a = 1117.6 pm, b = 684.8 pm, c = 799.2 pm for Tl5SnF9 and a = 1111.4 pm, b = 674.7 pm, c = 783.2 pm for Tl5TiF9. Characteristic building units in the new Thallium(I) fluoridefluorometallates(IV) are [Tl5F3]2+ sheets found for the first time, which are connected via [MF6]2– octahedra (M = Ti, Sn) to a threedimensional network (dSn–F = 194–197 pm, dTi–F = 186–187 pm). The monovalent Tl are coordinated by 8 F with distances Tl–F between 264 and 334 pm. The chemical bonding is discussed on the basis of Extended‐Hückel band structure calculations.  相似文献   

14.
Syntheses and Structure Analyses of Iodocuprates (I). XI. Crystal Structure of Tl4Cu2I6 Tl4Cu2I6 was prepared by melting TlI and CuI or by hydrothermal synthesis in concentratet aqueous HI solution. The crystal structure analysis of Tl4Cu2I6 (orthorhombic, Pnnm, a = 919.6(1), b = 955.2(2), c = 933.6(2) pm, Z = 2) shows that the compound contains dinuclear anions [Cu2I6]4? which are built up by edge sharing CuI4-tetrahedra. The coordination of TlI with I? is analogous to the yellow TlI.  相似文献   

15.
Crystal Structure Investigations of Tl2AgI3 und NaAgI2 · 3 H2O Tl2AgI3 was synthesized by the reaction of TlI with AgI in aqueous HI (25%) in a pressure vessel. The compound crystallizes in the rhombohedral space group R3 ; a = 1044,3(2); c = 1993,5(3)pm; Z = 9. The crystal structure contains trinuclear anions [Ag3I8]5? and [ITl6]5+ octahedra. The anions are composed of two AgI4-tetrahedra which are connected to an AgI6 octahedron via common faces. Single crystals of NaAgI2 · 3 H2O were formed by reaction of NaI with AgI in aqueous solution. The compound crystallizes in the orthorhombic space group Pbca with lattice parameters a = 711,2(2); b = 939,8(3); c = 2462,2(4) pm; Z = 8. The crystal structure is built up by polymeric layers [AgI3/3I½1/2?] of corner sharing AgI4 tetrahedra (GaOCl type) and [Na(H2O)4/2(H2O)I½1/2+] octahedra chains.  相似文献   

16.
The compounds Rb3Sb2Br9, Rb3Sb2I9, Rb3Bi2Br9, Rb3Bi2I9, and Tl3Bi2Br9 were synthesized and their crystal structures determined from single crystal X‐ray diffraction data. The compounds Rb3Sb2Br9, Rb3Sb2I9, and Rb3Bi2I9 crystallize in the Tl3Bi2I9 type of structure (space group P21/n, no. 14). Rb3Bi2Br9 and Tl3Bi2Br9 crystallize in a new but closely related type of structure (space group P21/a, no. 14). Both structure types feature characteristic double layers comprising corner‐sharing EX6 octahedra. The space groups are set in a way that the stacking direction of the layers is the [001] direction. The group‐subgroup relations to cubic perovskite ABO3 are discussed. Differences between M3E2X9 types are attributed to distortions of the underlying MX3 close packing. Depending on the atomic size ratio, the distortions are quantified by an order parameter.  相似文献   

17.
Orange‐red single crystals of thallium carbodiimide, Tl2NCN, have been grown from an aqueous solution of cyanamide and thallium carbonate under strongly basic conditions. Tl2NCN crystallizes in space group with a = 5.338(1), b = 6.626(2), c = 9.645(3) Å, α = 98.765(4)°, β = 98.685(4)°, γ = 113.178(4)°, and Z = 3; the structure can be considered a strongly distorted anti‐CdI2 type. One finds two crystallographically different and irregular [NCN]Tl6 octahedra in which the Tl–N distances of the three‐coordinate monovalent thallium ions lie between 2.52 and 2.72Å. The two symmetry‐inequivalent NCN2? units adopt the carbodiimide shape, and the course of its molar volume as a function of the monovalent counter cation is analyzed.  相似文献   

18.
Ordered single‐crystals of the metallic subiodide Bi13Pt3I7 were grown and treated with n‐butyllithium. At 45 °C, complete pseudomorphosis to Bi12Pt3I5 was achieved within two days. The new compound is air‐stable and contains the same ${{{\hfill 2\atop \hfill \infty }}}$ [(PtBi8/2)3I]n+ honeycomb nets and iodide layers as the starting material Bi13Pt3I7, but does not include ${{{\hfill 1\atop \hfill \infty }}}$ [BiI2I4/2]? iodidobismuthate strands. Electron microscopy and X‐ray diffraction studies of solid intermediates visualize the process of the topochemical crystal‐to‐crystal transformation. In the electronic band structures of Bi13Pt3I7 and Bi12Pt3I5, the vicinities of the Fermi levels are dominated by the intermetallic fragments. Upon the transformation of Bi13Pt3I7 into Bi12Pt3I5, the intermetallic part is oxidized and the Fermi level is lowered by 0.16 eV. Whereas in Bi13Pt3I7 the intermetallic layers do not interact across the iodidobismuthate spacers (two‐dimensional metal), they couple in Bi12Pt3I5 and form a three‐dimensional metal.  相似文献   

19.
Bi13Pt3I7: A Subiodide with a Pseudo-Symmetric Layer Structure The reaction of PtI2 with Bi and BiI at 630 K yields black, lustrous, air insensitive crystals of the subiodide Bi13Pt3I7. The layered crystal structure (triclinic, C1 , a = 1581.0(2) pm, b = 912.6(1) pm, c = 2149.6(6) pm, α = 90.03(2)°, β = 96.96(2)°, γ = 90.11(1)°, V = 3078.6 · 106 pm3) contains edge-sharing [PtBi8/2] cubes, which form nets of Kagomé type. Iodine atoms fill the hexagonal-prismatic voids therein. These [(PtBi8/2)3I] layers are alternately separated by layers of iodine atoms or [BiI] zigzag-chains. The marked pseudo-symmetry of the structure favours stacking faults, which cause streaks of diffuse scattering in the diffraction pattern.  相似文献   

20.
(Bzl4P)2[Bi2I8] – an Iodobismuthate with Penta‐coordinated Bi3+ Ions (Bzl4P)2[Bi2I8] ( 1 , Bzl = –CH2–C6H5) is the first iodobismuthate showing square pyramidal coordination of the Bi3+ ion. The anion structure of 1 is compared with that of (Ph4P)2[Bi2I8(thf)2] ( 2 ), in which the vacant coordination sites in 1 are occupied by THF ligands. (Bzl4P)2[Bi2I8] ( 1 ): Space group P1 (No. 2), a = 1300.6(6), b = 1316.8(6), c = 2157.0(9) pm, α = 78.66(3), β = 87.17(3), γ = 60.62(3)°, V = 3151(2)_.106 pm3; (Ph4P)2[Bi2I8(thf)2] ( 2 ): Space group P1 (No. 2), a = 1146.5(1), b = 1181.2(1), c = 1249.2(1) pm, α = 92.28(1), β = 105.71(1), γ = 95.67(1)°, V = 1616.6(2)_.106 pm3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号