首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Small AgnPd (n = 5) clusters and their hydrides AgnPdH (n = 5) have been studied by density functional theory calculations. For bare clusters, the structures in which the Pd atom has a maximum number of neighboring Ag atoms tend to be energetically favorable. Hydrogen prefers binding to Ag? Pd bridge site of AgnPd clusters except for Ag5Pd. The binding energy has a strong odd–even oscillation. The electron transfers are from Ag atoms to Pd in bare clusters and are from metal clusters to H in cluster hydrides. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
3.
在UBP86/LAN2DZ水平上计算了金镍二元团簇(AunNi6-n,n=0~6)吸附CO的稳定构型和相关性质.计算结果表明,AunNi6-nCO团簇的最低能量结构是在AunNi6-n团簇最低能量结构或亚稳态结构基础上吸附CO分子而形成.优化结构中C-O键长表明,吸附后的CO没有解离,即CO分子在AunNi6-n团簇表...  相似文献   

4.
In this work, first‐principles density functional theory (DFT) is used to predict oxygen adsorption on two types of hybrid carbon and boron‐nitride nanotubes (CBNNTs), zigzag (8,0), and armchair (6,6). Although the chemisorption of O2 on CBNNT(6,6) is calculated to be a thermodynamically unfavorable process, the binding of O2 on CBNNT(8,0) is found to be an exothermic process and can form both chemisorbed and physisorbed complexes. The CBNNT(8,0) has very different O2 adsorption properties compared with pristine carbon nanotubes (CNTs) and boron‐nitride nanotube (BNNTs). For example, O2 chemisorption is significantly enhanced on CBNNTs, and O2 physisorption complexes also show stronger binding, as compared to pristine CNTs or BNNTs. Furthermore, it is found that the O2 adsorption is able to increase the conductivity of CBNNTs. Overall, these properties suggest that the CBNNT hybrid nanotubes may be useful as a gas sensor or as a catalyst for the oxygen reduction reaction. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Dissociative adsorption of molecular oxygen (O2) on aluminum (Al) clusters has attracted much interest in the field of surface science and catalysis, but theoretical predictions of the reactivity of this reaction in terms of barrier height is still challenging. In this regard, we systematically investigate the reactivity of O2 with Al clusters using density functional theory (DFT) and atom‐centered density matrix propagation (ADMP) simulations. We also calculate potential energy surfaces (PESs) of the reaction between O2 and Al clusters to estimate the barrier energy of this reaction. The M06‐2X functional gives the barrier energy in agreement with the one calculated by coupled cluster singles and doubles with perturbed triples (CCSD(T)) while the TPSSh functional significantly underestimates the barrier height. The ADMP simulation using the M06‐2X functional predicts the reactivity of O2 with the Al cluster in agreement with the experimental findings, that is, singlet O2 readily reacts with Al clusters but triplet O2 is less reactive. We found that the ability of a DFT functional to describe the charge transfer appropriately is critical for calculating the barrier energy and the reactivity of the reaction of O2 with Al clusters. The M06‐2X functional is relevant for investigating chemical reactions involving Al and O2. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
CO adsorption on small neutral, anionic, and cationic silver clusters Ag(n) (n = 1-7) has been studied with use of the PW91PW91 density functional theory (DFT) method. The adsorption of CO on-top site, among various possible sites, is energetically preferred irrespective of the charge state of the silver cluster. The cationic silver clusters generally have a greater tendency to adsorb CO than the anionic and neutral silver ones, except for n = 3 and 4, and the binding energies reach a local minimum at n = 5. The binding energies on the neutral clusters, instead, reach a local maximum at n = 3, which is about 0.87 eV, probably large enough to be captured in the experiments. Binding of CO to the silver clusters is generally weaker than that to the copper and gold counterparts at the same size and charge state. This is due to the weaker orbital interaction between silver and CO, which is caused by the larger atomic radius of the silver atom. In contrast, Au atoms with a larger nuclear charge but a similar atomic radius to silver owing to the lanthanide contraction are able to have a stronger interaction with CO.  相似文献   

7.
用密度泛函理论方法计算了CO分子吸附在有机配体聚乙烯吡咯烷酮poly(N-vinyl-2-pyrrolidone)(PVP)保护下的Au20团簇上的稳定构型的结构和性质。配体PVP通过物理吸附主要作用于Au20团簇的顶点位置。与Au20比较,配体的存在有利于CO的吸附和活化,其根本原因是PVP和CO在Au20表面分别作为供电子和吸电子基团产生的协同效应。中性及阴离子Au20团簇对配体和CO的吸附强度不同,前者对PVP吸附作用较强,后者对CO的吸附和活化作用较强。  相似文献   

8.
The adsorption mode of aromatic molecules on transition metal surfaces plays a key role in their catalytic transformation. In this study, by means of density functional theory calculations, we systematically investigate the adsorption of p‐chloroaniline on a series of Pd surfaces, including stepped surfaces, flat surfaces, and clusters. The adsorption energies of p‐chloroaniline on these substrates [Pd(221), Pd(211), Pd(111), Pd(100), Pd13‐icosahedral, Pd13‐cubo‐octahedron, Pd55] are ?1.90, ?2.13, ?1.70, ?2.11, ?2.53, ?2.65, ?2.23 eV, respectively. Benzene ring is adsorpted on catalyst rather than amine group in p‐chloroaniline molecular. A very good linear relationship is further found between the adsorption energies of p‐chloroaniline and the d‐band center of both Pd surfaces and clusters. The lower of d‐band center of Pd models, the stronger adsorption of p‐chloroaniline on catalysts. In addition, the frontier molecular orbital and density of states analysis explain the adsorption energy sequence: cluster Pd13 > stepped Pd(221) surface > flat Pd(111) surface. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
The density functional theory (DFT) and periodic slab model were used to get information concerning the adsorption of HCHO on the FeO(100) surface. A preferred η2-(C,O)-di-σ four-membered ring adsorption conformation on the Fe-top site was found to be the most favorable structure with the predicted adsorption energy of 210.7 kJ/mol. The analysis of density of states, Mulliken population, and vibrational frequencies before and after adsorption showed clear weakening of the carbonyl bond, and high sp3 charact...  相似文献   

10.
Model core potential computations were performed for Rh2, Rh3, and Rh4 clusters and their respective cations and anions using the linear combination of Gaussian‐type orbital, nonlocal spin density method. The optimized geometries, electronic and magnetic structures, binding and fragmentation energies, adiabatic ionization potentials, and electron affinities were determined. Results show that the ionization potentials, electron affinities, binding energies, and magnetic moments decrease with the cluster size. For Rh2 and Rh3 the most stable structures exhibit ferromagnetic properties, while Rh4 in its ground state is found to be paramagnetic. The structures of minimum energy for the charged species often differs from the corresponding neutral one. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

11.
The effect of a single vanadium dopant atom on the reactivity of small gold clusters is studied in the gas phase. In particular we investigated carbon monoxide adsorption on vanadium doped gold clusters using a low-pressure collision cell. Employing this technique the reactivity of both neutral and cationic clusters was studied under the same experimental conditions. Analysis of the kinetic data as a function of the pressure in the reaction cell shows that the reaction mechanism is composed of a fast adsorption and a delayed dissociation reaction. It is demonstrated that the reactivity of positively charged Au(n)V(m)(+) (n = 8-30, m = 0-3) is greatly enhanced as compared to the corresponding neutral species and that dissociation rates decrease with decreasing temperatures. While the overall magnitude of the reactivity does not change upon doping with vanadium clusters, the size dependence is significantly affected. The neutral singly vanadium doped gold clusters show a sudden drop after size Au(13)V, followed by a smooth increase, in contrast to the extended odd-even staggering for bare gold clusters. This difference can be explained by changes in the electronic structure of the clusters, related to the partly filled 3d shell of the vanadium dopant atom.  相似文献   

12.
Density functional theory (DFT) calculations within the framework of generalized gradient approximation have been used to systematically investigate the adsorption of nitric oxide (NO) molecule on neutral, cationic, and anionic Pdn (n = 1–5) clusters. NO coordinate to one Pd atom of the cluster by the end‐on mode, where the tilted end‐on structure is more favorable due to the additional electron in the π* orbital. On the contrary, in the neutral and cationic Pd2 system, NO coordinates to the bridge site of cluster preferably by the side‐on mode. Charge transfer between Pd clusters and NO molecule and the corresponding weakening of N? O bond is an essential factor for the adsorption. The N? O stretching frequency follow the order of cationic > neutral > anionic. Binding energy of NO on anionic clusters is found to be greater than those of neutral and cationic clusters. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Using gradient‐corrected density functional theory, we have comparatively studied the adsorption properties of diatomic molecules N2 and NO on vanadium clusters up to 13 atoms. Spontaneous dissociation is found for N2 adsorbing on Vn with n = 4–6, 12, and for NO with n = 3–12, respectively, whereas for the rest of the clusters, N2 (NO) molecularly adsorbs on the cluster for all the possible sites. The incoming N2 retains the magnetism of Vn except for V2 and V6 whose moments are quenched from 2 μB to zero. Consequently, the moments of VnN2 (n = 2–13) show even/odd oscillation between 0 and 1 μB. On the adsorption of NO, the magnetic moments of Vn with closed electronic shell are raised to 1 μB at n = 4, 8, and 10, and 3 μB at n = 12, whereas for open shell clusters, their magnetic moments increase for n = 5 and 9 and decrease for n = 2, 3, 5–7, 11, and 13 by 1 μB. These findings are rationalized by combinatory analysis from several aspects, for example, the geometry and stability of bare clusters, charge transfer induced by the adsorption, feature of frontier orbitals, and spin density distribution. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Geometric structures, electronic properties, and stabilities of small Zrn and Zr (n = 2–10) clusters have been investigated using density functional theory with effective core potential LanL2DZ basis set. For both neutral and charged systems, several isomers and different multiplicities were studied to determine the lowest energy structures. Many most stable states with high symmetry were found for small Zrn clusters. The most stable structures and symmetries of Zr clusters are the same as the neutral ones except n = 4 and 7. We found that the clusters with n > 3 possess highly compact structures. The clusters are inclined to form the caged‐liked geometry containing pentagonal structures for n > 8, which is in favor of energy. From the formation energy and second‐order energy difference, we obtained that 2‐, 5‐, 7‐atoms of neutral and 4‐, 7‐atoms cationic clusters are the magic numbers. Furthermore, the highest occupied molecular orbital‐lowest unoccupied molecular orbital gaps display that the Zr3, Zr6, Zr, and Zr are more stable in chemical stability. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

15.
基于密度泛函理论,采用广义梯度近似(GGA)分析了H2分子吸附在氧化硅团簇上的几何结构、电子性质以及吸附能.结果发现:H2分子与Si3O4团簇相互作用时,H2分子被分解,游离的H原子优先吸附在末端Si原子上,表明Si3O4团簇体系对氢气的存储主要依赖于末端存在悬挂键的Si原子,接着H2分子才以分子的形式以较小吸附能吸附在Si3O4H4团簇上.氢气分子主要引起与其邻近的原子电荷的重新分布.该团簇体系的红外、拉曼光谱图有效地鉴定了H2分子的吸附状态,为理论上确定团簇的稳定结构和实验上对观测结果的分析提供有力的途径.  相似文献   

16.
The electronic and geometrical structures of neutral and negatively charged AlO5, AlO6, AlO7, AlO8, AlO9, AlO10, AlO11, AlO12, AlO15, AlO16, and AlO18 along with the corresponding series of ScOn and ScO oxides were investigated using density functional theory with generalized gradient approximation. We found that these species possess geometrically stable isomers for all values of n = 5–12, 15, 16, 18 and are thermodynamically stable for n = 5–7. The species with n = 16 are found to be octa‐dioxides M(η1‐O2)8 while the species with n = 15 and 18 are penta‐ozonides (η2‐O3)M(η1‐O3)4 and hexa‐ozonides M(η1‐O3)6, respectively. Geometrical configurations of a number of the lowest total energy states of Al and Sc oxides are different. Especially, drastic differences are found for the anion AlO and ScO pairs at n = 9, 10, and 11. The Sc? O bonds are longer than the Al? O bonds by ≈0.2 Å, which, in turn, slightly affects the corresponding interoxygen bond lengths. The charges on metal atoms are close to +2e in both Al series and to +1.5e in both Sc series. As an extra electron is delocalized over ligands in the presence of a large positive charge on the metal atom of the anions, the electron affinity (EA) of the neutrals along with the ionization energies of the anions are large and exceed the EAs of the halogen atoms in a number of cases. © 2011 Wiley Periodicals, Inc. J Comput Chem 2011  相似文献   

17.
The monolayer (ML) and submonolayer Pt on both terminations of PbTiO3(110) polar surface have been studied by using density functional theory (DFT) with projector‐augmented wave(PAW) potential and a supercell approach. The most favored ML Pt arrangements on PbTiO and O2 terminations are the hollow site and the short‐bridge site, respectively. By examining the geometries of different ML arrangements, we know that the dominant impetus for stability of the favored adsorption site for PbTiO termination is the Pt–Ti interaction (mainly from covalent bonding), while that for O2 termination is the Pt–O interaction (mainly from ionic bonding). In addition, the appearance of the gap electronic states in the outermost layers of each termination indicates that a channel for charge transfer between adsorbed layer and substrate is formed. Moreover, the interface hybridization between Pt 5d and O 2p orbitals is also observed, especially for ML Pt on O2 termination. The stability sequences for various arrangements of 1/2 ML Pt adsorption conform well with those of ML Pt adsorption, and the most stable arrangement is energetically more favorable than the corresponding ML coverage in the view of adsorption energy maximization. The behavior, i.e. the increase in adsorption energy with decrease in coverage, indicates that Pt? Pt interactions weaken those between Pt and the substrate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In order to understand the catalytic activity of small metal clusters as a function of their size, we have studied the interaction of CH4 with Al4 and Al5 neutral and charged clusters, as well as neutral thermally expanded clusters in the two lowest lying spin states, using density functional theory. These calculations, via extended search, are used to determine the stable positions of H and CH3 near the cluster, and the transition state to break the H─CH3 bond. In order to understand the factors underlying the reactivity of the clusters, we have analyzed the electronic structure at the transition state. By an analysis of the change of the electronic density of states close to the transition state, we identify the orbitals involved in the bond breaking process. In conjunction with our previous studies of Al2 and Al3 clusters, we find that the small Al clusters, except for Al5, lower the CH3─H dissociation barrier with respect to the gas-phase value, although Al lacks occupied d-orbitals. Still, Al5 does not catalyze methane bond breaking, which is attributed to the required interaction with low-lying Al sp-states. Furthermore, in all cases where stable methyl-aluminum-hydrides are possible, the recombinative desorption of methane is studied by vibrational analysis and application of transition state theory.  相似文献   

19.
Density functional theory calculations were performed to determine the pairwise lateral interaction energies between carbon monoxide and coadsorbed elements from the first three rows of the periodic table on a Rh(100) surface. The atoms were placed in a c(2x2) arrangement of fourfold hollow sites and the carbon monoxide probe molecule in a p(2x2) arrangement, so that each CO molecule had four atoms as nearest neighbours. The alkali atoms show an attractive interaction with CO while the other atoms show a repulsive interaction. For second-row elements the maximum repulsion is at nitrogen and for third-row elements at sulphur. Attempts to correlate the interaction energies with properties of the system, such as electronegativity, distances, or change in work function, failed, which implies that each combination of adsorbates needs to be calculated separately.  相似文献   

20.
We report on the structures of aluminum hydrides derived from a tetrahedral aluminum (Al4) cluster using ab initio quantum chemical calculation. Our calculation of binding energies of the aluminum hydrides reveals that stability of these hydrides increases as more hydrogen atoms are adsorbed, while stability of Al – H bonds decreases. We also analyze and discuss the chemical bonds of those clusters by using recently developed method based on the electronic stress tensor. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号