首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of [C10N2H10]2[P2Mo5O21(OH)2] · 2H2O, contains the heteropolyanion, [P2Mo5O21(OH)2]4—, together with diprotonated 4, 4′‐bipyridine. The heteropolyanion is built up from five MoO6 octahedra sharing four common edges and one common corner, capped by two PO3(OH) tetrahedra. The structure is stabilized by hydrogen bonds involving the hydrogen atoms of the 4, 4′‐bipyridine, water molecules and the oxygen atoms of the pentamolybdatobisphosphate. This is the first example that this kind of cluster could be isolated in the presence of a poly‐functional aromatic molecule ion. Crystal data: triclinic, P1¯ (No. 2), a = 9.983(2)Å, b = 11.269(2)Å, c = 17.604(4)Å, α = 73.50(3)°, β = 84.07(3)°, γ = 67.96(3)°; V = 1760.0(6)Å3; Z = 2; R1 = 0.037 and wR2 = 0.081, for 9138 reflections [I > 2σ(I)].  相似文献   

2.
Synthesis, Crystal Structure and Magnetic Behaviour of Gd(CF3CF2COO)3(H2O)3 Single crystals of Gd(CF3CF2COO)3(H2O)3 have been obtained by reaction of Gd2O3 with an aqueous solution of CF3CF2COOH. The compound crystallizes triclinically in the space group (No. 2; Z = 2; a = 928.5(1) pm, b = 1037.1(1) pm, c = 1147.3(2) pm, α = 90.44(2)°, β = 108.56(1)°, γ = 106.49(1)°). In the crystal structure the gadolinium ions are bridged by carboxylate groups to dimers and are coordinated eightfold by oxygen atoms. The magnetic behaviour was investigated in the temperature range of 1.77 to 300 K. The magnetic data indicate weak antiferromagnetic interactions within the dimeric unit (Jex = ?0.0057 cm?1).  相似文献   

3.
Gadolinium dicyanamide dihydrate Gd[N(CN)2]3 · 2 H2O was prepared by ion exchange in aqueous solution followed by evaporation of the solvent at room temperature. Gd[N(CN)2]3 · 2 H2O was characterized by single‐crystal structure analysis, FTIR spectroscopy and DSC analysis. In the crystal there are three crystallographically independent [N(CN)2]? ions and Gd3+ which are coordinated by six N atoms from six different [N(CN)2]? ions and two O atoms from two water molecules forming an irregular quadratic antiprism. Four H bonds have been identified in the structure of Gd[N(CN)2]3 · 2 H2O, two of them running to terminal N atoms and two to the bridging N atoms of dicyanamide ions (Gd[N(CN)2]3 · 2 H2O: P21/n (no. 14), a = 7.4845(15) Å, b = 11.529(2) Å, c = 13.941(3) Å, β = 93.98(3)°, Z = 4, 1948 reflections, 175 parameters, R1 = 0.0493). The DSC analysis indicates that Gd[N(CN)2]3 · 2 H2O looses the crystal water at temperatures around 130 – 140 °C forming anhydrous Gd[N(CN)2]3, the structure of which has been refined by the Rietveld method based on X‐ray powder diffraction data. Gd[N(CN)2]3 was found to be isotypic with Ln[N(CN)2]3 (Ln = La, Ce, Pr, Nd, Sm and Eu) which previously have been described in the literature.  相似文献   

4.
The synthesis and characterisation of the hexanuclear copper(II) carboxylate complex [Cu(O2CCHPhOC2H4OC2H4OCH3)2]6 ( 1 ) is described. Single‐crystal X‐ray structure analysis reveals that the copper(II) ions are arranged in a six‐membered ring which adopts a chair‐like conformation. The copper(II) ions are bridged by μ2‐ and μ3‐coordinating carboxylates. The magnetic behavior of 1 was measured between 2 and 300 K, revealing at low temperature a weak antiferromagnetic interaction. The χM(T) dependency was fitted mathematically with one coupling constant J1 and a paramagnetic impurity α.  相似文献   

5.
单分子磁体[Mn4(CF3COO)4(hmp)6]的合成、晶体结构及磁学性质   总被引:1,自引:0,他引:1  
以[Mn12O12(CF3COO)16(H2O)4]·2CF3COOH·4H2O和2-羟甲基吡啶(hmpH)为起始物, 在四氢呋喃溶液中合成了一种新的四核锰配合物[Mn4(CF3COO)4(hmp)6]. X射线单晶衍射结果表明, 该配合物属于单斜晶系, P21/c空间群, 晶胞参数a=1.3663(3) nm, b=1.4705(3) nm, c=1.4734(3) nm, β=98.51(3) °, V=2.9276 nm3, Z=2. 配合物中有两个CF3COO-基团与七配位Mn2中心相连, 其中一个为单齿配体, 另一个是双齿配体. 直流磁化率研究结果表明, 该配合物具有较高的自旋基态, 而交流磁化率依赖于外场频率变化极值的出现表明该配合物是一种单分子磁体.  相似文献   

6.
Structure and Thermal Behaviour of Gadolinium(III)-sulfate-octahydrate Gd2(SO4)3 · 8 H2O . Gd2(SO4)3 · 8 H2O crystallizes monoclinic with space group C2/c and the lattice constants a = 13.531(7), b = 6.739(2), c = 18.294(7) Å, β = 102.20(8)°. In the structure Gd is coordinated by 4 oxygen atoms of crystal water and 4 oxygens of sulfate giving rise to a distorted square antiprism. During DTA-TG-experiments the title compound first loses crystal water in a two-step mechanism in the temperature range 130–306°C. The resulting Gd2(SO4)3 is amorphous and recrystallization occurs in the range 380–411°C. The so-obtained low-temperature modification β-Gd2(SO4)3, undergoes a monotropic phase transition at about 750°C to the high-temperature form α-Gd2(SO4)3. The powder pattern of this modification was indexed based on monoclinic symmetry with space group C2/c and lattice constants a = 9.097(3), b = 14.345(5), c = 6.234(2) Å, β = 97.75(8)°. The hightemperature modification of gadolinium-sulfate shows decomposition to Gd2O2SO4 at 900°C and, subsequently, decomposition at 1 200°C yields the formation of C-Gd2O3.  相似文献   

7.
K2[CrF5·H2O] is monoclinic: a = 9.6835(3) Å, b = 7.7359(2) Å, c = 7.9564(3) Å, β = 95.94(1)°, Z = 4, space group C2/c (no 15). Its crystal structure was solved from its X‐ray powder pattern recorded on a powder diffractometer, using for the refinement the Rietveld method. It is built up from isolated octahedral [CrF5·OH2]2? anions separated by potassium cations. The dehydration of K2[CrF5·H2O] leads to anhydrous orthorhombic K2CrF5: a = 7.334(2) Å, b = 12.804(4) Å, c = 20.151(5) Å, Z = 16, space group Pbcn (no 60), isostructural with K2FeF5.  相似文献   

8.
By slow evaporation of solutions containing Ln(ClO4)3 (Ln = Sm, Gd), H5IO6 and an excess of HClO4, crystals of the title compounds could be obtained. Their structures were determined by single‐crystal X‐ray diffraction. The compounds crystallize in the monoclinic crystal system, space group P21/c. They contain Ln3+ ions, which are coordinated by [H2I2O10]4— anions forming two‐dimensional, cationic networks. These are separated by perchlorate ions, forming a layered structure.  相似文献   

9.
The reaction of K4[Re6Sei8(OH)a6] · 8H2O with NaN3 in water results in the formation of [Re6Sei8(N3)a]4– units that crystallize with K+ and H2O to form K4[Re6Sei8(N3)a6] · 4H2O [P21/c (N°14), a = 9.0595(3) Å, b = 13.2457(4) Å, c = 13.2040(5) Å, β = 94.472(1)°]. In the solid state, the unit is characterized by N3 linear groups forming bond angles of roughly 120° with the Re6 cluster. The positions of the νas and νsy bands as well as N–N–N deformation modes of the N3 groups are discussed. Luminescence properties of the [Re6Sei8(N3)a]4– unit were measured in the solid state and in an acetonitrile solution. The redox potential of the [Re6Sei8(N3)a]4–/[Re6Sei8(N3)a]3– system was measured in acetonitrile. Experimental results were analyzed in the light of density functional theory calculations.  相似文献   

10.
NC12H8(NH)2[Gd(N3C12H8)4] and [Gd(N3C12H8)3(N3C12H9)]·PhCN: A Contribution to the Reactivity and Crystal Chemistry of Homoleptic Pyridylbenzimidazolates of the Rare Earth Elements Transparent colourless crystals of the compound NC12H8(NH)2[Gd(N3C12H8)4] were obtained by solvent‐free reaction of gadolinium metal with molten 2‐(2‐Pyridyl)‐benzimidazole. Transparent yellow crystals of the compound [Gd(N3C12H8)3(N3C12H9)]·PhCN were obtained by further reacting NC12H8(NH)2[Gd(N3C12H8)4] with benzonitrile thermally. Both compounds exhibit homoleptic pure nitrogen coordinations of gadolinium, the PhCN ligand is not coordinating. Whilst NC12H8(NH)2[Gd(N3C12H8)4] is salt like and consists of (NC12H8(NH)2)+ and [Gd(N3C12H8)4] ions, [Gd(N3C12H8)3(N3C12H9)]·PhCN has a molecular structure of uncharged [Gd(N3C12H8)3(N3C12H9)] units.  相似文献   

11.
[PrAl(CF3COO)2(CF3CHOO)(C2H5)2(C4H8O)2]2 Mr=1420.56, monoclinic, P21/n, a=10.651(6), b=24.276(9), c=11.110(5)(), β=107.650(4)°, V=2737.4(1)()3, Z=2, Dc=3.45 g/cm3, F(000)=2816, T=233K, MoKα radiation (λ=0.71069()), μ(MoKα)=38.017 cm-1, R=0.048 for 2847 observed reflections (I≥3σ(I)). It is isostructural with [LnAl(CF3COO)2(CF3CHOO)-R2(C4H8O)2]2 (Ln=Ho, R=Et; Ln=Nd, Y, R=iBu). Pr3+ is coordinated by eight oxygen atoms from five bridging ligands and two THF forming a distorted bicap-prism.  相似文献   

12.
The crystal structure of [Lu(HOCH2COO)2(H2O)4][Lu(HOCH2COO)4] ( 1 ) and Dy2(OCH2COO)2(HOCH2COO)2 · 4H2O ( 2) were determined by X‐ray crystallography. The space group of 1 and 2 are P2/c and P21/c, respectively. In 1 , discrete anions and cations held together by hydrogen bonds form the lattice, while the structure of 2 is a 3‐D network of cross‐linked metal‐ligand chains. The lanthanides are eight‐coordinated by chelating glycolate ligands and water molecules with distorted dodecahedral coordination. The core of 2 is a centrosymmetric dimer complex formed by two dysprosium atoms bridged by two oxygen atoms from deprotonated hydroxyl groups of glycolate ligands. The vibration spectra of the crystals were also measured and compared to each other.  相似文献   

13.
金属磷酸盐材料在吸附、离子交换、离子传导和催化剂方面有潜在的应用前景[1~5]. 近年来, 通过水热反应合成了一些A-V-P-O化合物. 在这些化合物中, A一般为碱金属或有机阳离子, 如层状结构的[H2N(C4H8)2NH2][(VO)4(OH)4(PO4)2][6] 和[H2N(C2H4)3NH2][(VO)8(HPO4)3(PO4)4*(OH)2]*2H2O[6], 一维链状结构的 [H2NCH2CH2NH3(VO)(PO4)][7], 手性双螺旋结构的 [(CH3)2NH2]K4[(VO)10(H2O)2(OH)4(PO4)7]*H2O[8]以及具有三维骨架结构的化合物 [H3N(CH2)3NH3K(VO)3(PO4)3][9], [H3N(CH2)3NH3]2[V(H2O)2(VO)6(OH)2(HPO4)3(PO4)5]*3H2O[10]和[H3N(CH2)2NH3][(VO)3(H2O)2(PO4)2(HPO4)4][11].  相似文献   

14.
The reaction of octamethylenetetrathiafulvalene (OMTTF) with excess CuBr2 in tetrahydrofurane/acetonitrile yields black (OMTTF)2[Cu4Br10] ( 1 ). The crystal structure determination shows the presence of OMTTF cations and tetranuclear bromidocuprate anions. The novel anion consists of four edge and corner sharing CuBr4 tetrahedra, which are connected to a ring. The assignment of the ionic charges and oxidation states for the copper atoms is supported by the magnetic properties. 1 is antiferromagnetic with TN ≈ 30 K. The magnetic moment reaches 2.54 B.M., which indicates, together with the Curie–Weiss constant of –35 K, a coupling of the paramagnetic spins over the whole temperature region. The ionic charges of the salt‐like compound 1 are therefore (OMTTF2+)2[(Cu+)2(Cu2+)2Br10]4–. The antiferromagnetism is explained by the coupling of the spins of two Cu2+ ions in the anion with an exchange constant of J = –18 cm–1. The CuI and CuII atoms are clearly distinguishable in the mixed valent anion. The OMTTF cation is not planar but exhibits an interplanar angle between the two central C3S2 ring moieties of 15.3°, which is in accordance to the dicationic oxidation state.  相似文献   

15.
The compound [K([2.2.2]crypt)]Cs7[Sn9]2(en)3 ( 1 ) was synthesized from an alloy of formal composition KCs2Sn9 by dissolving in ethylenediamine (en) followed by the addition of [2.2.2]crypt and toluene. 1 crystallizes in the orthorhombic space group Pcca with a = 45.38(2), b = 9.092(4), c = 18.459(8) Å, and Z = 4. The structure consists of Cs7[Sn9]2 layers which contain [Sn9]4– anions and Cs+ cations. The layers are separated by [K([2.2.2]crypt)]+ units. In the intermetallic slab (Cs7[Sn9]2) compares the arrangement of pairs of symmetry‐related [Sn9]4– anions with the dimer ([Ge9]–[Ge9])6– in [K([2.2.2]crypt)]2Cs4([Ge9]–[Ge9]), in which the clusters are linked by a cluster‐exo bond. The shortest distance between atoms of such two clusters in 1 is 4.762 Å, e. g. there are no exo Sn‐Sn bonds. The [Sn9]4– anion has almost perfect C4v‐symmetry.  相似文献   

16.
The new octadecanuclear Cu‐Ln complex, [Cu12Nd6(OH)24(betaine)16(NO3)3(H2O)10](NO3)[PF6]14·5H2O, was synthesized, which crystallizes in triclinic P1¯ space group, a = 18.649(6)Å, b = 20.363(7)Å, c = 19.865(7)Å, α = 116.61(2)°, β = 91.99(2)°, γ = 117.93(2)°, V = 5666(3)Å3. Its crystal structure features a [Cu12Nd6(OH)24(betaine)16(NO3)3(H2O)10]15+ core of pseudocubic Oh symmetry, with the six Nd ions positioned at the vertices of a regular octahedron and the twelve Cu ions located at the midpoints of the twelve octahedral edges. The Cu‐Nd metal framework may be viewed as a cuboctahedron, which is interconnected by twenty‐four μ3‐OH bridges that are each linked to one Nd ion and two Cu ions. In the centre of metal polyhedron, there is an encapsulated NO3 anion that exhibits a multi‐ coordinating mode.  相似文献   

17.
A tetranuclear copper‐calcium complex of pyridinioacetate (C5H5N+CH2CO2), namely [Cu2Ca2(C5H5NCH2CO2)(H2O)3](ClO4)8·H2O was synthesized and characterized by X‐ray crystallography. The complex crystallizes in triclinic, P1¯ (No. 2), a = 15.658(2), b = 18.260(2), c = 18.456(2)Å, α = 91.552(2), β = 94.004(3), γ = 104.928(2)°, V = 5081(1)Å3, Z = 2. In the crystal structure, a square‐planar [Cu(C5H5NCH2CO2)4]2+ entity uses three of its four carboxylate groups to chelate to a calcium atom forming a [CuCa(C5H5NCH2CO2)4]4+ dinuclear subunit, and a pair of such dinuclear subunits are linked by the two remaining pyridinioacetate ligands through the calcium atoms to furnish a tetranuclear [Cu2Ca2 (C5H5NCH2CO2)10(H2O)3]8+ cation.  相似文献   

18.
A hydrothermal reaction of Gd(NO3)3 and 2, 2′‐diphenic acid give rise to a new coordination compound equation/tex2gif-stack-2.gif[Gd2(H2O)2(C14H8O4)3] with one‐dimensional structure. Single crystal X‐ray studies shows that the compound has infinite O‐Gd‐O one‐dimensional chains resulting from a bonding between Gd3+ cations and diphenate anions. The Gd3+ ions are distorted dodecahedra with respect to oxygen atoms. Magnetic investigations show no ordering up to 4K and the compound exhibit photoluminescence at room temperature.  相似文献   

19.
Potassium‐1,3,5‐triazine‐2,4,6‐tricarboxylate dihydrate K3[C3N3(COO)3] · 2H2O was obtained by saponification of the respective ethyl ester in aqueous solution under mild conditions and subsequent crystallization at 4 °C. The crystal structure of the molecular salt was elucidated by single‐crystal X‐ray diffraction [P , a = 696.63(14), b = 1748.5(3), c = 1756.0(3) pm, α = 119.73(3), β = 91.96(3), γ = 93.84(3)°, V = 1847.6(6) · 106 pm3, Z = 6, T = 200 K]. Perpendicular to [100] the triazine tricarboxylate and potassium ions are arranged in layers alternating with layers of crystal water molecules. Two thirds of the triazine tricarboxylate units form hexagonal channels being filled with the remaining triazine tricarboxylate molecules. K3[C3N3(COO)3] · 2H2O was additionally investigated by means of FTIR spectroscopy, TG and DTA measurements.  相似文献   

20.
Long-range ferromagnetic ordering at 3 K is observed for the title compound, which may be considered as a fully localized mixed-valence species (Mo3+ and Mo4+) as well as a mixed-spin species (low-spin and high-spin Mn2+ ions). Its two-dimensional structure consists of heart-shaped 48-membered rings, and each ring contains 16 metal centers (see picture).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号