首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For more than three decades, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) has been used for elemental depth profiling. In recent years, cluster primary ion sources (principally, C60+, Bin+, and Aun+) have become widely available, and they can greatly enhance the signal intensity of molecular ions (10–1000 times). Understanding the performance of cluster ion analysis beams used in elemental depth profiling can greatly assist normal ToF‐SIMS users in choosing the optimal analysis beam for depth profiling work. Presently, however, the experimental data are lacking, and such choices are difficult to make. In this paper, hydrogen and deuterium depth profiling were studied using six different analysis beams—25 keV Bi+, Bi3+, Bi5+, 50 keV Bi32+, 10 keV C60+, and 20 keV C602+. The effort shows that cluster primary ions do enhance H? and D? yields, but the enhancement is only about 1.5–4.0 times when compared to atomic Bi+ ions. Because the currents of atomic ion analysis beams are much stronger than the currents of cluster ion analysis beams for most commercial ToF‐SIMS instruments, the atomic ion analysis beams can provide the strongest H? and D? signal intensities, and may be the best choices for hydrogen and deuterium depth profiling. In addition, two representative nuclides, 30Si and 18O, were also studied and yielded results similar to those of H? and D?. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Polyatomic primary ions offer low penetration depth and high damage removal rates in some polymers, facilitating their use in the molecular depth profiling of these polymers by secondary ion mass spectrometry (SIMS). This study is the second in a series of systematic characterizations of the effect of polymer chemistry on degradation under polyatomic primary ion bombardment. In this study, time‐of‐flight SIMS (ToF‐SIMS) was used to measure the damage of ~90 nm thick spin‐cast poly(methyl methacrylate), poly(n‐butyl methacrylate), poly(n‐octyl methacrylate) and poly(n‐dodecyl methacrylate) films under extended (~2 × 1014 ions cm?2) 5 keV SF5+ bombardment. The degradation of the poly(n‐alkyl methacrylates) were compared to determine the effect of the length of the alkyl pendant group on their degradation under SF5+ bombardment. The sputter rate and stability of the characteristic secondary ion intensities of these polymers decreased linearly with alkyl pendant group length, suggesting that lengthening the n‐alkyl pendant group resulted in increased loss of the alkyl pendant groups and intra‐ or intermolecular cross‐linking under SF5+ bombardment. These results are partially at variance with the literature on the thermal degradation of these polymers, which suggested that these polymers degrade primarily via depolymerization with minimal intra‐ or intermolecular cross‐linking. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, we present molecular depth profiling of multilayer structures composed of organic semiconductor materials such as tris(8‐hydroxyquinoline)aluminum (Alq3) and 4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPD). Molecular ions produced from Alq3 and NPD were measured by linear‐type time‐of‐flight (TOF) mass spectrometry under 5.5 keV Ar700 ion bombardment. The organic multilayer films were analyzed and etched with large Ar cluster ion beams, and the interfaces between the organic layers were clearly distinguished. The effect of temperature on the diffusion of these materials was also investigated by the depth profiling analysis with Ar cluster ion beams. The thermal diffusion behavior was found to depend on the specific materials, and the diffusion of Alq3 molecules was observed to start at a lower temperature than that of NPD molecules. These results prove the great potential of large gas cluster ion beams for molecular depth profiling of organic multilayer samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The relative sputtering yield of carbon with respect to tantalum was determined for 1 keV Ar+ ion bombardment in the angular range of 70°–82° (measured from surface normal) by means of Auger electron spectroscopy depth profiling of C/Ta and Ta/C bilayers. The ion bombardment‐induced interface broadening was strongly different for the C/Ta and Ta/C, whereas the C/Ta interface was found to be rather sharp, the Ta/C interface was unusually broad. Still the relative sputtering yields (YC/YTa) derived from the Auger electron spectroscopy depth profiles of the two specimens agreed well. The relative sputtering yields obtained were different from those determined earlier on thick layers, calculated by simulation of SRIM2006 and by the fitting equation of Eckstein. The difference increases with increase of angle of incidence. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
An effect of measurement conditions on the depth resolution was investigated for dual‐beam time of flight‐secondary ion mass spectrometry depth profiling of delta‐doped‐boron multi‐layers in silicon with a low‐energy sputter ion (200 eV – 2 keV O2+) and with a high‐energy primary ion (30 keV Bi+). The depth resolution was evaluated by the intensity ratio of the first peak and the subsequent valley in B+ depth profile for each measurement condition. In the case of sputtering with the low energy of 250 eV, the depth resolution was found to be affected by the damage with the high‐energy primary ion (Bi+) and was found to be correlated to the ratio of current density of sputter ion to primary ion. From the depth profiles of implanted Bi+ primary ion remaining at the analysis area, it was proposed that the influence of high‐energy primary ion to the depth resolution can be explained with a damage accumulation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We have investigated the merits of fullerene cluster ions as projectiles in time‐of‐flight secondary neutral mass spectrometry (ToF‐SNMS) sputter depth profiling of an Ni:Cr multilayer sample similar to the corresponding NIST depth profiling standard. It is shown that sputter erosion under bombardment with C60+ ions of kinetic energies between 10 and 20 keV provides good depth resolution corresponding to interface widths of several nanometres. This depth resolution is maintained during the complete removal of the multilayer stack with a total thickness of 500 nm. This finding is in contrast to the case where atomic Ga+ projectile ions of comparable kinetic energy are used, demonstrating the unique features of cluster projectiles in sputter depth profiling. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Molecular depth profiling of polymers by secondary ion mass spectrometry (SIMS) has focused on the use of polyatomic primary ions due to their low penetration depth and high damage removal rates in some polymers. This study is the third in a series of systematic characterizations of the effect of polymer chemistry on degradation under polyatomic primary ion bombardment. In this study, time‐of‐flight SIMS (ToF‐SIMS) was used to assess 5 keV SF5+‐induced damage of ~90 nm thick spin‐cast poly(2‐hydroxyethyl methacrylate) (PHEMA) and ~130 nm thick trifluoroacetic anhydride‐derivatized PHEMA (TFAA‐PHEMA) films. The degradation of these polymers under extended SF5+ bombardment (~2 × 1014 ions cm?2) was compared to determine the effect of the pendant group chemistry on their degradation. The sputter rate and ion‐induced damage accumulation rate of PHEMA were similar to a poly(n‐alkyl methacrylate) of similar pendant group length, suggesting that the addition of a terminal hydroxyl group to the alkyl pendant group does not markedly change the stability of poly(n‐alkyl methacrylates) under SF5+ bombardment. The sputter rate and ion‐induced damage accumulation rate of TFAA‐PHEMA were much higher than a poly(n‐alkyl methacrylate) of similar pendant group length, suggesting that derivatization of the terminal hydroxyl group can significantly reduce degradation of the polymer under SF5+ bombardment. This result is in good agreement with the literature on the thermal and radiation‐induced degradation of fluorinated poly(alkyl methacrylates), which suggests that the electron‐withdrawing fluorinated pendant group increases the probability of depolymerization. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The accuracy of ultrashallow depth profiling was studied by secondary ion mass spectrometry (SIMS) and high‐resolution Rutherford backscattering spectroscopy (HRBS) to obtain reliable depth profiles of ultrathin gate dielectrics and ultrashallow dopant profiles, and to provide important information for the modeling and process control of advanced complimentary metal‐oxide semiconductor (CMOS) design. An ultrathin Si3N4/SiO2 stacked layer (2.5 nm) and ultrashallow arsenic implantation distributions (3 keV, 1 × 1015 cm?2) were used to explore the accuracy of near‐surface depth profiles measured by low‐energy O2+ and Cs+ bombardment (0.25 and 0.5 keV) at oblique incidence. The SIMS depth profiles were compared with those by HRBS. Comparison between HRBS and SIMS nitrogen profiles in the stacked layer suggested that SIMS depth profiling with O2+ at low energy (0.25 keV) and an impact angle of 78° provides accurate profiles. For the As+‐implanted Si, the HRBS depth profiles clearly showed redistribution in the near‐surface region. In contrast, those by the conventional SIMS measurement using Cs+ primary ions at oblique incidence were distorted at depths less than 5 nm. The distortion resulted from a long transient caused by the native oxide. To reduce the transient behavior and to obtain more accurate depth profiles in the near‐surface region, the use of O2+ primary ions was found to be effective, and 0.25 keV O2+ at normal incidence provided a more reliable result than Cs+ in the near‐surface region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Depth profiling of an organic reference sample consisting of Irganox 3114 layers of 3 nm thickness at depths of 51.5, 104.5, 207.6 and 310.7 nm inside a 412 nm thick Irganox 1010 matrix evaporated on a Si substrate has been studied using the conventional Cs+ and O2+ as sputter ion beams and Bi+ as the primary ion for analysis in a dual beam time‐of‐flight secondary ion mass spectrometer. The work is an extension of the Versailles Project on Advanced Materials and Standards project on depth profiling of organic multilayer materials. Cs+ ions were used at energies of 500 eV, 1.0 keV and 2.0 keV and the O2+ ions were used at energies of 500 eV and 1.0 keV. All four Irganox 3114 layers were identified clearly in the depth profile using low mass secondary ions. The depth profile data were fitted to the empirical expression of Dowsett function and these fits are reported along with the full width at half maxima to represent the useful resolution for all the four delta layers detected. The data show that, of the conditions used in these experiments, an energy of 500 eV for both Cs+ beam and O2+ beam provides the most useful depth profiles. The sputter yield volume per ion calculated from the slope of depth versus ion dose matches well with earlier reported data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This work documents the behaviour of the positive secondary ion yield of bulk polytetrafluoroethylene (PTFE) under dual‐beam depth profiling conditions employing 1 keV Ar+, Cs+ and SF5+. A unique chemical interaction is observed in the form of a dramatic enhancement of the positive secondary ion yield when PTFE is dual‐beam profiled with 1 keV Cs+. The distinct absence of such an enhancement is noted for comparison on two non‐fluorinated polymers, polyethylene terephthalate (PET) and polydimethylsiloxane (PDMS). The bulk PTFE was probed using 15‐keV, 69Ga+ primary ions in dual beam mode under static conditions; 1‐keV Ar+ (a non‐reactive, light, noble element), Cs+ (a heavier metallic ion known to form clusters) and SF5+ (a polyatomic species) served as the sputter ion species. The total accumulated primary ion dose was of the order of 1015 ions/cm2, which is well beyond the static limit. The enhancement of the positive secondary yield obtained when profiling with 1‐keV Cs+ far exceeds that obtained when SF5+ is employed. An explanation of this apparent reactive ion effect in PTFE is offered in terms of polarisation of C? F bonds by Cs+ in the vicinity of the implantation site thereby predisposing them to facile scission. The formation of peculiar, periodic CsxFy+ (where y = x ? 1) and CsxCyFz+ clusters that can extend to masses approaching 2000 amu are also observed. Such species may serve as useful fingerprints for fluorocarbons that can be initiated via pre‐dosing a sample with low‐energy Cs+ prior to static 15‐keV Ga+ analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Polyatomic primary ions have been applied recently to the depth profiling of organic materials by secondary ion mass spectrometry (SIMS). Polyatomic primary ions offer low penetration depth and high damage removal rates in some polymers, but the relationship between polymer chemistry and degradation under polyatomic primary ion bombardment has not been studied systematically. In this study, positive and negative ion time‐of‐flight SIMS (ToF‐SIMS) was used to measure the damage of ~100 nm thick spin‐cast poly(methyl methacrylate) (PMMA), poly(methyl acrylate) (PMA) and poly(methacrylic acid) (PMAA), films under extended (~2 × 1014 ions cm?2) 5 keV SF5+ bombardment. These polymers were compared to determine the effect of the main chain and pendant methyl groups on their degradation under SF5+ bombardment. The sputter rate of PMMA was approximately twice that of PMA or PMAA and the rate of damage accumulation was higher for PMA and PMAA than PMMA, suggesting that the main chain and pendant methyl groups played an important role in the degradation of these polymers under SF5+ bombardment. These results are consistent with the literature on the thermal and radiation‐induced degradation of these polymers, which show that removal of the main chain or pendant methyl groups reduces the rate of depolymerization and increases the rate of intra‐ or intermolecular cross‐linking. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Summary Electron beam induced effects in the near surface region of SK16 glass samples (44% SiO2, 25% B2O3, 28% BaO, 3% other) have been studied using Auger electron spectroscopy (AES) with 3 keV primary electrons at different current densities (4.7 mAcm–2–75 mAcm–2). It was found that the SiO2 and B2O3 constituents dissociate during electron bombardment to form binding structures which are characteristic for elemental Si and B, respectively. To investigate the influence of the ion beam irradiation on the binding structure, the glass samples were bombarded with Ar+ ions of different kinetic energies (0.5 keV–5 keV), followed by XPS analysis. In comparison to the XPS signal of a virgin SK16 surface from a sample fractured in situ under UHV conditions, the FWHM of the photoelectron peaks were found to increase with the bombarding ion energy. Subsequent Auger spectra revealed that the ion bombardment also caused a dissociation of the SiO2 and B2O3 components. Depending on the ion energy, a constant ratio between elemental and oxidized binding form is obtained.  相似文献   

14.
Summary In order to study the influence of the ion bombardment parameters on the achievable depth resolution of AES sputter depth profiles, 500 Å thick Ta2O5-layers produced by anodic oxidation of polished polycrystalline Ta-substrates were sputter depth profiled with Ar+- and Xe+-ions in a Scanning Auger Microprobe. The 90%–10% interface widthsz were measured for bombarding ion energies from 0.5 to 5 keV and angles of incidence of 15°, 33° and 56°, respectively.z reduces from 48 Å for Ar+-bombardment at = 15° andE = 5 keV to 20 Å when bombarding at = 56° andE = 1 keV. The corresponding values for Xe+-bombardment are 31 Å and 18 Å. The influence of the ion bombarding energy and angle on the interface broadening is discussed by means of a simple model. From corresponding evaluations the maximum transportation length of layer species into the substrate is found to be proportional toE 0.5.
Zum Einfluß der Ionenbeschußparameter auf die Tiefenauflösung bei der AES-Sputtertiefenprofil-analyse von Ta2O5/Ta mit Ar+ und Xe+
  相似文献   

15.
The C9 position of cinchona alkaloids functions as a molecular hinge, with internal rotations around the C8? C9 (τ1) and C9? C4′ (τ2) bonds giving rise to four low energy conformers ( 1 ; anti‐closed, anti‐open, syn‐closed, and syn‐open). By substituting the C9 carbinol centre by a configurationally defined fluorine substituent, a fluorine‐ammonium ion gauche effect (σC?H→σC?F*; Fδ????N+) encodes for two out of the four possible conformers ( 2 ). This constitutes a partial solution to the long‐standing problem of governing internal rotations in cinchonium‐based catalysts relying solely on a fluorine conformational effect.  相似文献   

16.
We present the results of a VAMAS (Versailles project on Advanced Materials and Standards) interlaboratory study on organic depth profiling, in which twenty laboratories submitted data from a multilayer organic reference material. Individual layers were identified using a range of different sputtering species (C60n+, Cs+, SF5+ and Xe+), but in this study only the C60n+ ions were able to provide truly ‘molecular’ depth profiles from the reference samples. The repeatability of profiles carried out on three separate days by participants was shown to be excellent, with a number of laboratories obtaining better than 5% RSD (relative standard deviation) in depth resolution and sputtering yield, and better than 10% RSD in relative secondary ion intensities. Comparability between laboratories was also good in terms of depth resolution and sputtering yield, allowing useful relationships to be found between ion energy, sputtering yield and depth resolution. The study has shown that organic depth profiling results can, with care, be compared on a day‐to‐day basis and between laboratories. The study has also validated three approaches that significantly improve the quality of organic depth profiling: sample cooling, sample rotation and grazing angles of ion incidence. © Crown copyright 2010.  相似文献   

17.
The cloud‐point curves of polystyrene (PS) mixed with reactive epoxy monomers based on diglycidyl ether of bisphenol A with stoichiometric amounts of 4,4′‐methylenebis(2,6‐diethylaniline) were experimentally studied. A thermodynamic analysis of the phase‐separation process in these epoxy‐modified polymers was performed that considered the composition dependence of the interaction parameter, χ(T2) (where T is the temperature and Φ2 is the volume fraction of polystyrene), and the polydispersity of both polymers. In this analysis, χ(T2) was considered the product of two functions: one depending on the temperature [D(T)] and the other depending on the composition [B2)]. For mixtures without a reaction, the cloud‐point curves showed upper critical solution temperature behavior, and the dependence of χ(T2) on the composition was determined from the threshold point, that is, the maximum cloud‐point temperature. During the isothermal reactions of mixtures with different initial PS concentrations, the dependence of χ(T2) on the composition was determined under the assumption that, at each conversion level, the D(T) contribution to the χ(T2) value had to be constant independently of the composition. For these mixtures, it was demonstrated that the changes in the chemical structure produced by the epoxy–amine reaction reduced χ(T2). This effect was more important at lower volume fractions of PS. Nevertheless, the decrease in the absolute value of the entropic contribution to the free energy of mixing was the principal driving force behind the phase‐separation process. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1351–1360, 2004  相似文献   

18.
A polyaromatic tube with a subnanometer‐sized cavity was efficiently prepared on a gram‐scale through the stereo‐controlled cyclotrimerization of a diphenylanthracene derivative as a key step. The facile exterior alkylation of the polyaromatic framework leads to a moderately fluorescent tube (R=‐OC10H21; ΦF=20 %) in the solid state. The emission intensity of the solid‐state alkyl‐substituted tube is remarkably enhanced upon heating (up to 1.6 times, ΦF=31 %) as well as doping with fluorescent dyes (up to 4.2 times, ΦF=83 %) through efficient energy transfer.  相似文献   

19.
The time‐dependent quantum wave packet and the quasi‐classical trajectory (QCT) calculations for the title reactions are carried out using three recent‐developed accurate potential energy surfaces of the 11A′, 13A′, and 13A″ states. The two commonly used polarization‐dependent differential cross sections, dσ00/dωt, dσ20/dωt, with ωt being the polar coordinates of the product velocity ω′, and the three angular distributions, Pr), Pr), and Prr), with θr, Φr being the polar angles of the product angular momentum, are generated in the center‐of‐mass frame using the QCT method to gain insight into the alignment and the orientation of the product molecules. Influences of the potential energy surface, the collision energy, and the isotope mass on the stereodynamics are shown and discussed. Validity of the QCT calculation has been examined and proved in the comparison with the quantum wave packet calculation. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

20.
We demonstrate depth profiling of polymer materials by using large argon (Ar) cluster ion beams. In general, depth profiling with secondary ion mass spectrometry (SIMS) presents serious problems in organic materials, because the primary keV atomic ion beams often damage them and the molecular ion yields decrease with increasing incident ion fluence. Recently, we have found reduced damage of organic materials during sputtering with large gas cluster ions, and reported on the unique secondary ion emission of organic materials. Secondary ions from the polymer films were measured with a linear type time‐of‐flight (TOF) technique; the films were also etched with large Ar cluster ion beams. The mean cluster size of the primary ion beams was Ar700 and incident energy was 5.5 keV. Although the primary ion fluence exceeded the static SIMS limit, the molecular ion intensities from the polymer films remained constant, indicating that irradiation with large Ar cluster ion beams rarely leads to damage accumulation on the surface of the films, and this characteristic is excellently suitable for SIMS depth profiling of organic materials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号