首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The in vitro antifungal activity of the dithiocarbamate organotin complexes [Sn{S2CN(CH2)4}2Cl2] ( 1 ), [Sn{S2CN(CH2)4}2Ph2] ( 2 ), [Sn{S2CN(CH2)4}Ph3] ( 3 ), [Sn{S2CN(CH2)4}2n‐Bu2] ( 4 ), [Sn{S2CN(CH2)4}Cy3] {Cy = cyclohexyl} ( 5 ), [Sn{S2CN(C2H5)2}2Cl2] ( 6 ), [Sn{S2CN(C2H5)2}2Ph2] ( 7 ), [Sn{S2CN(C2H5)2}Ph3] ( 8 ), [Sn{S2CN(C2H5)2}3Ph] ( 9 ) and [Sn{S2CN(C2H5)2}Cy3] ( 10 ) has been screened against Candida albicans (ATCC 18804), Candida tropicalis (ATCC 750) and resistant Candida albicans collected from HIV‐positive Brazilian patients with oral candidiasis. All compounds exhibited antifungal activities and complexes 3 and 8 displayed the best results. We have investigated the effect of compounds 1–10 on the cellular activity of the yeast cultures. Changes in mitochondrial function have not been detected. However, all drugs reduced ergosterol biosynthesis. Preliminary studies on DNA integrity indicated that the compounds do not cause gross damage to yeast DNA. The data suggest that these compounds share some mechanisms of action on cell membranes similar to that of polyene but not with azole drugs, normally used in Candida infections. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The betain‐like SOC2(PPh3)2 ( 1a ) reacts with [Mn2(CO)10] in THF to produce the salt‐like complex [(CO)4Mn(SOC2{PPh3}2)2][Mn(CO)5] ( 2 ). 1a is bonded via the sulfur atoms which are arranged in trans position in the octahedral environment of the manganese atom. With InCl3 from CH2Cl2 solution the addition product [Cl3In(SOC2{PPh3}2)] ( 3 ) is obtained along with the salt (H2C{PPh3}2)[InCl4]2 ( 4 ), which is the result of proton abstraction from the solvent. The crystal structures of 2· 0.5THF and 4· CH2Cl2 are reported. The compounds are further characterized by IR and 31P NMR spectroscopy.  相似文献   

3.
On the Reactivity of Alkylthio Bridged 44 CVE Triangular Platinum Clusters: Reactions with Bidentate Phosphine Ligands The 44 cve (cluster valence electrons) triangular platinum clusters [{Pt(PR3)}3(μ‐SMe)3]Cl (PR3 = PPh3, 2a ; P(4‐FC6H4)3, 2b ; P(n‐Bu)3, 2c ) were found to react with PPh2CH2PPh2 (dppm) in a degradation reaction yielding dinuclear platinum(I) complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PPh3, 3a ; P(4‐FC6H4)3, 3b ; P(n‐Bu)3; 3e ) and the platinum(II) complex [Pt(SMe)2(dppm)] ( 4 ), whereas the addition of PPh2CH2CH2PPh2 (dppe) to cluster 2a afforded a mixture of degradation products, among others the complexes [Pt(dppe)2] and [Pt(dppe)2]Cl2. On the other hand, the treatment of cluster 2a with PPh2CH2CH2CH2PPh2 (dppp) ended up in the formation of the cationic complex [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ). Furthermore, the terminal PPh3 ligands in complex 3a proved to be subject to substitution by the stronger donating monodentate phosphine ligands PMePh2 and PMe2Ph yielding the analogous complexes [{Pt(PR3)}2(μ‐SMe)(μ‐dppm)]Cl (PR3 = PMePh2, 3c ; PMe2Ph, 3d ). NMR investigations on complexes 3 showed an inverse correlation of Tolmans electronic parameter ν with the coupling constants 1J(Pt,P) and 1J(Pt,Pt). All compounds were fully characterized by means of NMR and IR spectroscopy. X‐ray diffraction analyses were performed for the complexes [{Pt{P(4‐FC6H4)3}}2(μ‐SMe)(μ‐dppm)]Cl ( 3b ), [Pt(SMe)2(dppm)] ( 4 ), and [{Pt(dppp)}2(μ‐SMe)2]Cl2 ( 5 ).  相似文献   

4.
Ligand Behaviour of P‐functional Organotin Halides: Nickel(II), Palladium(II), and Platinum(II) Complexes with Me2(Cl)SnCH2CH2PPh2 Me2(Cl)SnCH2CH2PPh2 ( 1 ) reacts with NiII, PdII, and PtII halides in molar ratio 2 : 1 forming the complexes [MX2{PPh2CH2CH2Sn(Cl)Me2}2] (M = Ni, Pd, Pt; X = Cl, Br) ( 3 – 6 , 9 , 10 ) ( 7 , 8 : M = Ni; Br instead of Cl). The nickel complexes were isolated and characterized both as the planar ( 3 , 5 , 7 ) and the tetrahedral ( 4 , 6 , 8 ) isomer. Crystal structure analyses and NMR data indicate for the planar nickel complexes 3 , 5 , 7 and [MCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 : M = Pd; 10 : M = Pt) the existence of intra and intermolecular M–Hal…Sn bridges. In a ligand : metal molar ratio of 3 : 1 the complexes [MéCl{PPh2CH2CH2SnCl2Me2}{PPh2CH2CH2Sn(Cl)Me2}2] ( 11 : M = Pd; 12 : M = Pt) are formed which represent intramolecular ion pairs. By dehalogenation of [PdCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 ) with sodium amalgam and graphite potassium (C8K), respectively, the palladacycles cis‐[Pd{PPh2CH2CH2SnMe2}2] ( 13 ) and trans‐[Pd(Cl)PPh2CH2CH2SnMe2{PPh2CH2CH2Sn(Cl)Me2}] ( 14 ) are formed. From the compounds 1 , 3 , 9 , 11 , and 12 the crystal structures are determined. All compounds are characterized by 1H, 31P, and 119Sn NMR spectroscopy.  相似文献   

5.
The reactions of phosphonium‐substituted metallabenzenes and metallapyridinium with bis(diphenylphosphino)methane (DPPM) were investigated. Treatment of [Os{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl with DPPM produced osmabenzenes [Os{CHC(PPh3)CHC(PPh3)CH}Cl2{(PPh2)CH2(PPh2)}]Cl ( 2 ), [Os{CHC(PPh3)CHC(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 3 ), and cyclic osmium η2‐allene complex [Os{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 4 ). When the analogue complex of osmabenzene 1 , ruthenabenzene [Ru{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl, was used, the reaction produced ruthenacyclohexadiene [Ru{CH?C(PPh3)CH?C(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 6 ), which could be viewed as a Jackson–Meisenheimer complex. Complex 6 is unstable in solution and can easily be convert to the cyclic ruthenium η2‐allene complexes [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 7 ) and [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 8 ). The key intermediates of the reactions have been isolated and fully characterized, further supporting the proposed mechanism for the reactions. Similar reactions also occurred in phosphonium‐substituted metallapyridinium [OsCl2{NHC(CH3)C(Ph)C(PPh3)CH}(PPh3)2]BF4 to give the cyclic osmium η2‐allene‐imine complex [OsCl2{NH?C(CH3)C(Ph)?(η2‐C?CH)}{(PPh2)CH2(PPh2)}(PPh3)]BF4 ( 11 ).  相似文献   

6.
The reaction of [RuCl2(PPh3)3] with closo‐[B10H10]2? and C5H5FeC5H4COOH (FcCO2H) in refluxing CH2Cl2 solution affords three ruthenaborane clusters: [PPh3(H2O)(FcCO2)RuB10H8Cl] (1), [(PPh3)2ClRu(PPh3)(FcCO2)RuB10H9]·0.5CH2Cl2 (2 × 0.5CH2Cl2) and [PPh3(FcCO2)2RuB10H8] (3). All of these compounds are characterized by FT‐IR, NMR spectroscopic techniques, elemental analysis and single‐crystal X‐ray analysis. They are all based on a closo‐type 1:2:4:2:2 {RuB10} stack with the metal occupying the unique six‐connected apical position and can be considered as having isocloso structures derived from the complete capping of the open face of an arachano geometry to give a completely closed deltahedral cluster. Compounds 1 and 2 both have an exo‐polyhedral ferrocenecarboxylate that is attached with one {Ru? O} and one {B? O} bond each, resulting in one exo‐cyclic five‐membered Ru? O? C? O? B ring. There is in addition one exo‐polyhedral ruthenium atom bonded to the center {RuB10} cluster via one {Ru? Ru} linkage and two {RuHµB} bridges, which forms a closed exo‐polyhedral tetrahedron configuration in compound 2. Compound 3 has two exo‐polyhedral ferrocenecarboxylates to form two five‐membered Ru? O? C? O? B rings engendering a symmetrical conformation. All of these new 11‐vertex ruthenaboranes can be considered as having isocloso structures derived from the complete capping of the open face of an arachano geometry to give a completely closed deltahedral cluster. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Crystal Structures of the Hexachlorometalates NH4[SbCl6], NH4[WCl6], [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 and (PPh4)2[WCl6]·4CH3CN The crystal structures of the title compounds were determined by single crystal X‐ray methods. NH4[SbCl6] and NH4[WCl6] crystallize isotypically in the space group C2/c with four formula units per unit cell. The NH4+ ions occupy a twofold crystallographic axis, whereas the metal atoms of the [MCl6] ions occupy a centre of inversion. There exist weak interionic hydrogen bridges. [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 crystallizes in the orthorhombic space group R3¯/m with Z = 3. The compound forms centrosymmetric ion triples, in which the potassium ions are coordinated with a WCl3 face each. In trans‐position to it the chlorine atom of a CH2Cl2 molecule is coordinated so that, together with the oxygen atoms of the crown ether, coordination number 10 is achieved. (PPh4)2[WCl6]·4CH3CN crystallizes in the monoclinic space group P21/c with Z = 4. This compound, too, forms centrosymmetric ion triples, in which in addition the acetonitrile molecules are connected with the [WCl6]2— ion via weak C—H···Cl contacts.  相似文献   

8.
The reaction of [PtCl2(PPh3)2] with closo‐B10H102? in ethanol under reflux conditions gave two nido 11‐vertex platinaundecaborane clusters: [(PPh3)2PtB10H10‐8,10‐(OEt)2]·CH2Cl2 (1) and [(PPh3)2PtB10H11‐11‐OEt]·CH2Cl2 (2) . A novel B10H102? deboronated nido 11‐vertex diplatinaundecaborane [(µ‐PPh2)(PPh3)2Pt2B9H6‐3,9,11‐(OEt)3]·CH2Cl2 (3) was obtained when the same reaction was carried out under solvothermal conditions. All of these compounds were characterized by infrared spectroscopy, NMR spectroscopy, elemental analysis and single‐crystal X‐ray diffraction. Both clusters 1 and 2 have a nido 11‐vertex {PtB10} polyhedral skeleton in which the Pt atom lies in the open PtB4 face. Each Pt atom connects with four B atoms and two P atoms of the PPh3 ligands. Cluster 3 has a nido 11‐vertex {Pt2B9} polyhedral skeleton in which two Pt atoms sit in neighbouring positions of the open Pt2B3 face, bridged by a PPh2 group. Each Pt atom connects three B atoms and a P atom of the PPh3 ligand. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The reaction of [MoCl(GeCl3)(CO)3(NCMe)2] with an equimolar quantity of L?L {L?L = 2,2′-bipy, 1,10-phen, Ph2P(CH2)nPPh2 (n = 1 or 2)} in CH2Cl2 at room temperature gave either [MoCl(GeCl3)(CO)3(L?L)] (L?L = 2,2′-bipy or 1,10-phen) (1 and 2) or [MoCl(GeCl3)(CO)2 (NCMe)(L?L)]{L?L = Ph2P(CH2)nPPh2 (n = 1 or 2) (3 or 4), respectively. Equimolar quantities of [MoCl(GeCl3)(CO)2(NCMe){Ph2P(CH2)PPh2}] (3) and L?L {L?L = 2,2′-bipy or Ph2P(CH)2PPh2} react in CH2Cl2 at room temperature to afford the cationic complexes [Mo(GeCl3)(CO)2{Ph2P(CH2) PPh2}(L?L)]Cl (5 and 6) in good yield. The cationic nature of 6 was established by chloride exchange by reacting Na[BPh4] with 6 in acetonitrile to give the tetraphenylborate complex [Mo(GeCl3)(CO)2{Ph2P(CH2)PPh2}2][BPh4] (7). Reaction of equimolar quantities of [MoCl(GeCl3) (CO)3(NCMe)2] and PhP(CH2CH2PPh2)2 in CH2Cl2 at room temperature afforded the dicarbonyl complex [MoCl(GeCl3)(CO)2{PhP(CH2CH2PPh2)2}] (8) in good yield.  相似文献   

10.
The Oxochlorotantalates (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2, (PPh4)2[Ta2OCl10] · 2 CH3CN, and (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 (K-18-crown-6)4[Ta4O6Cl12] · 12 CH2Cl2 was obtained from a reaction of tantalum pentachloride, K2S5 and 18-crwon-6 in dichlormethane. According to its crystal structure analysis it is tetragonal (space group I 4 2d) and contains [Ta4O6Cl12]4– ions that have an adamantane-like Ta4O6 skeleton. Each K+ ion is coordinated by the oxygen atoms of the crown ether molecule from one side and with three Cl atoms of one [Ta4O6Cl12]4– ion from the opposite side. (PPh4)2[Ta2OCl10] · 2 CH3CN was a product from PPh4Cl and TaCl5 in acetonitrile in the presence of Na2S4. Its crystals are monoclinic (space group P21/c) and contain centrosymmetric [Ta2OCl10]2– ions having a linear Ta–O–Ta grouping with short bonds (Ta–O 189 pm). TaCl5 and H2S formed a solid substance (TaSCl3) from which a small amount of (PPh4)2[Ta2OCl9]2 · 2 CH2Cl2 was obtained by the reaction with PPh4Cl in CH2Cl2. The anions in the monoclinic crystals (space group P21/n) consist of two Ta2OCl9 units which are joined by chloro bridges; each Ta2OCl9 unit has a nearly linear Ta–O–Ta group with differing bond lengths (179 and 202 pm). The oxygen in the compounds probably was introduced by traces of water in the crown ether, acetonitrile or H2S, respectively.  相似文献   

11.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Reactions of PhAsCl2 with BrMg(CH2)nMgBr (n = 4 or 5) in THF gave phenylarsacycloalkanes as colourless oily liquids which could be distilled under vacuum. Treatment of PhAs(CH2)n­with MCl2(RCN)2 (M = Pd or Pt; R = Ph­or Me) afforded mononuclear complexes, [MCl2{PhAs(CH2)n}2]. Reactions with [Pt2Cl2(μ‐Cl)2(PEt3)2] gave mixed‐ligand complexes, [PtCl2(PEt3){PhAs(CH2)n]. The palladium complexes adopt a trans geometry whereas the platinum complexes exist in a cis configuration. The crystal and molecular structure of [PdCl2(PhAsCH2CH2CH2CH2CH2)2] was determined by X‐ray diffraction methods. The molecule consists of a square‐planar palladium atom with trans chlorides and trans arsa ligands. The six‐membered ‘AsC5′ ring adopts a chair conformation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
The chemistry of transition‐metal complexes with unusually high coordination numbers has been of interest because of their application in catalytic and biological systems. Deprotonation of the ionogenic tetradentate ligand 6,6′‐bis(1H‐tetrazol‐5‐yl)‐2,2′‐bipyridine [H2bipy(ttr)2] in the presence of iron(III) and tetra‐n‐butylammonium bromide, [n‐Bu4N]Br, in solution resulted in the synthesis of a rare octacoordinated anionic mononuclear complex, tetra‐n‐butylammonium bis[6,6′‐bis(tetrazol‐1‐id‐5‐yl)‐2,2′‐bipyridine]iron(III) methanol hemisolvate dihydrate, (C16H36N)[Fe(C12H6N10)2]·0.5CH3OH·2H2O or [n‐Bu4N][Fe{bipy(ttr)2}2]·0.5CH3OH·2H2O ( 1 ), which has been structurally characterized by elemental analysis, powder X‐ray diffraction (PXRD) and single‐crystal X‐ray diffraction. In 1 , the coordination sphere of the iron(III) ion is a distorted bis‐disphenoid dodecahedron, in which the eight coordination positions are occupied by eight N atoms from two independent tetradentate [bipy(ttr)2]2? anionic ligands, therefore forming the anionic [Fe{bipy(ttr)2}2]? unit, with the negative charge balanced by a free [n‐Bu4N]+ cation. An investigation of the magnetic properties of 1 revealed a gradual incomplete spin‐crossover behaviour below 150 K.  相似文献   

14.
Aminophosphonium salts [Ph3PN(H)R]BPh4 ( 1 ) [R = C6H5CH2 ( 1a ), 4‐CH3C6H4CH2 ( 1b ), C6H5 ( 1c )] were obtained by allowing hydride IrHCl2(PPh3)2{P(OEt)3} to react first with triflic acid and then with the organic azide RN3. The compounds were characterized spectroscopically and by X‐ray crystal structure determination of [Ph3PN(H)CH2C6H4‐4‐CH3]BPh4 ( 1b ). A reaction path for the formation of aminophosphonium cations is also proposed.  相似文献   

15.
{2‐(N,N‐Dimethylaminomethyl)phenyl}(di‐t‐butyl)tin(IV)chloride, {2‐[(CH3)2NCH2]C6H4}Sn(t‐Bu)2 Cl, has been prepared and characterized using NMR and crystallography. This is the first example of a triorganotin(IV) halide containing the 2‐[(CH3)2NCH2]C6H4—group as a C,N‐chelating ligand with a weak intramolecular Sn—N interaction because of the steric hindrance of t‐butyl groups. The interatomic Sn—N distance is elongated to 2.904(14) Å and the central tin atom is distorted trigonal bipyramidal. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The novel phosphonyl‐substituted ferrocene derivatives [Fe(η5‐Cp)(η5‐C5H3{P(O)(O‐iPr)2}2‐1,2)] ( Fc1,2 ) and [Fe{η5‐C5H4P(O)(O‐iPr)2}2] ( Fc1,1′ ) react with SnCl2, SnCl4, and SnPh2Cl2, giving the corresponding complexes [(Fc1,2)2SnCl][SnCl3] ( 1 ), [{(Fc1,1′)SnCl2}n] ( 2 ), [(Fc1,1′)SnCl4] ( 3 ), [{(Fc1,1′)SnPh2Cl2}n] ( 4 ), and [(Fc1,2)SnCl4] ( 5 ), respectively. The compounds are characterized by elemental analyses, 1H, 13C, 31P, 119Sn NMR and IR spectroscopy, 31P and 119Sn CP‐MAS NMR spectroscopy, cyclovoltammetry, electrospray ionization mass spectrometry, and single‐crystal as well as powder X‐ray diffraction analyses. The experimental work is accompanied by DFT calculations, which help to shed light on the origin for the different reaction behavior of Fc1,1′ and Fc1,2 towards tin(II) chloride.  相似文献   

17.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

18.
As for [RuCl2(PPh33], carbonylation of [RuCl2(PR3)3] [PR3 = P(p-tolyl)3, PEtPh2) in N,N 1-dimethylformamide (dmf) gives [Ru(CO)Cl2 (dmf) (PR3)2] (II). For PR3 = PEtPh2, rearrangement of (II) in various solvents gives inseparable mixtures (31P evidence) but for PR3 = P(p-tolyl)3 [Ru2(CO)2Cl4-{P(p-tolyl)3}3]is obtained. Reaction of [Ru(CO)Cl2 (dmf) - {P(p-tolyl)3}2] with [RuCI2{(P(p-tolyl)3}3] (1:1 mol ratio) gives [Ru2 (CO) Cl4 {P (p-tolyl)3}4] whereas reaction of [Ru (CO) Cl2 (dmf) - (PPh32] with (Rul2 {P (p-tolyl)3}3] gives [Ru2(CO)Cl4 (PPh3)2] - {P(p-tolyl)3}2] - Reaction of [RuCl2 {P(p-tolyl)3}3] with CS2 gives the related [Ru2Cl4(CS) {P(p-tolyl)3}4] and [{RuCl2(CS)}P(p-tolyl)3{2}2] whereas [RuCl2(PEtPh2)3] and CS2 produce [RuCl2(S2CPEtPh2) (PEtPh2)2]CS2 and [Ru2Cl4(CS)2(PEtph2)3].  相似文献   

19.
Reaction of the potassium salt of N‐thiophosphorylated thiourea α‐naphthylNHC(S)NHP(S)(OiPr)2 ( HL ) with Cu(PPh3)3I in aqueous EtOH/CH2Cl2 leads to the mononuclear complex [Cu(PPh3)2L–S,S′]. By using copper(I) iodide instead ofCu(PPh3)3I, the polynuclear complex [Cun(L–S,S′)n] was obtained. The structures of these compounds were investigated by elemental analysis, 1H and 31P{1H} NMR and IR spectroscopy. The crystal structures of HL and Cu(PPh3)2L were determined by single‐crystal X‐ray diffraction.  相似文献   

20.
Compounds including the free or coordinated gas‐phase cations [Ag(η2‐C2H4)n]+ (n=1–3) were stabilized with very weakly coordinating anions [A]? (A=Al{OC(CH3)(CF3)2}4, n=1 ( 1 ); Al{OC(H)(CF3)2}4, n=2 ( 3 ); Al{OC(CF3)3}4, n=3 ( 5 ); {(F3C)3CO}3Al‐F‐Al{OC(CF3)3}3, n=3 ( 6 )). They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of ethene in CH2Cl2 solution. As a reference we also prepared the isobutene complex [(Me2C?CH2)Ag(Al{OC(CH3)(CF3)2}4)] ( 2 ). The compounds were characterized by multinuclear solution‐NMR, solid‐state MAS‐NMR, IR and Raman spectroscopy as well as by their single crystal X‐ray structures. MAS‐NMR spectroscopy shows that the [Ag(η2‐C2H4)3]+ cation in its [Al{OC(CF3)3}4]? salt exhibits time‐averaged D3h‐symmetry and freely rotates around its principal z‐axis in the solid state. All routine X‐ray structures (2θmax.<55°) converged within the 3σ limit at C?C double bond lengths that were shorter or similar to that of free ethene. In contrast, the respective Raman active C?C stretching modes indicated red‐shifts of 38 to 45 cm?1, suggesting a slight C?C bond elongation. This mismatch is owed to residual librational motion at 100 K, the temperature of the data collection, as well as the lack of high angular data owing to the anisotropic electron distribution in the ethene molecule. Therefore, a method for the extraction of the C?C distance in [M(C2H4)] complexes from experimental Raman data was developed and meaningful C?C distances were obtained. These spectroscopic C?C distances compare well to newly collected X‐ray data obtained at high resolution (2θmax.=100°) and low temperature (100 K). To complement the experimental data as well as to obtain further insight into bond formation, the complexes with up to three ligands were studied theoretically. The calculations were performed with DFT (BP86/TZVPP, PBE0/TZVPP), MP2/TZVPP and partly CCSD(T)/AUG‐cc‐pVTZ methods. In most cases several isomers were considered. Additionally, [M(C2H4)3] (M=Cu+, Ag+, Au+, Ni0, Pd0, Pt0, Na+) were investigated with AIM theory to substantiate the preference for a planar conformation and to estimate the importance of σ donation and π back donation. Comparing the group 10 and 11 analogues, we find that the lack of π back bonding in the group 11 cations is almost compensated by increased σ donation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号