首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Well shaped single crystals of the equiatomic germanides YbPdGe and YbPtGe were synthesized from the elements using the Bridgman technique. The samples were investigated by X‐ray powder and single crystal diffraction: YbAuSn type, Imm2, a = 433.4(2), b = 2050.6(6), c = 752.6(2) pm, wR2 = 0.0723, 1551 F2 values, 58 variables for YbPdGe and TiNiSi type, Pnma, a = 686.32(9), b = 430.47(9), c = 751.02(8) pm, wR2 = 0.0543, 379 F2 values, 20 variables for YbPtGe. Both germanides crystallize with different superstructure variants of the KHg2 type, resulting from different stacking of the puckered Pd3Ge3 and Pt3Ge3 hexagons. While only Pt–Ge interactions occur in the [PtGe] polyanionic network of YbPtGe, weak interlayer Pd–Pd (297 pm) and Ge–Ge (275 pm) interactions occur in YbPdGe. The crystal chemical peculiarities are discussed in the light of the different superstructure formed.  相似文献   

2.
The metal‐rich indides Ca2Pd2In and Ca2Pt2In were synthesised from the elements in sealed tantalum ampoules in an induction furnace. Both samples were investigated by X‐ray powder and single crystal diffraction: HT‐Pr2Co2Al type, C2/c, a = 1017.6(5), b = 574.1(3), c = 812.7(3) pm, β = 104.54(2)°, wR2 = 0.0344, 590 F2 values for Ca2Pd2In and a = 1004.3(3), b = 568.9(1), c = 813.1(2) pm, β = 104.25(2)°, wR2 = 0.0435, 654 F2 values for Ca2Pt2In with 25 variables per refinement. The structure contain Pd2 (272 pm) and Pt2 (264 pm) dumb‐bells with a trigonal prismatic coordination for each transition metal atom. These AlB2 related slabs are condensed via common edges. Together the palladium and indium atoms build up three‐dimensional [Pd2In] and [Pt2In] polyanionic networks in which the calcium atoms fill larger channels. The bonding of calcium to the network proceeds via shorter Ca–Pd and Ca–Pt contacts. Ca2Pd2In and Ca2Pt2In are Pauli paramagnets.  相似文献   

3.
New auride Ca3Au3In was synthesized from the elements in a sealed tantalum tube in a high‐frequency furnace. Ca3Au3In was investigated by X‐ray powder and single crystal diffraction: ordered Ni4B3 type, Pnma, a = 1664.1(6), b = 457.3(2), c = 895.0(3) pm, wR2 = 0.0488, 1361 F2 values, and 44 variables. The three crystallographically independent boron positions of the Ni4B3 type are occupied by the gold atoms, while the four nickel sites are occupied by calcium and indium in an ordered manner. All gold atoms have trigonal prismatic coordination, i.e. Ca6 prisms for Au1 and Au2 and Ca4In2 prisms for Au3. While the Au3 atoms are isolated, we observe Au1–Au1 and Au2–Au2 zig‐zag chains at Au–Au distances of 292 and 284 pm. These slabs resemble the CrB type structure of CaAu. Consequently Ca3Au3In can be considered as a ternary auride. Together the Au2, Au3 and indium atoms build up a three‐dimensional [Au2In] polyanionic network (281–293 pm Au–In) in which the chains of Au1 centered trigonal prisms are embedded. The crystal chemical similarities with the structures of Ni4B3, CaAuIn, and CaAu are discussed.  相似文献   

4.
The new rare earth metal rich intermetallic compounds RE4CoMg (RE = Y, La, Pr, Nd, Sm, Gd–Tm) were prepared via melting of the elements in sealed tantalum tubes in a water‐cooled sample chamber of a high‐frequency furnace. The compounds were investigated by X‐ray diffraction of powders and single crystals: Gd4RhIn type, , a = 1428.38(9) pm, wR2 = 0.0638, 680 F2 values, 20 variables for La4CoMg, a = 1399.5(2) pm, wR2 = 0.0584, 589 F2 values, 20 variables for Pr4CoMg, a = 1390.2(3) pm, wR2 = 0.0513, 634 F2 values, 20 variables for Nd3.90CoMg1.10, a = 1381.0(3) pm, wR2 = 0.0730, 618 F2 values, 22 variables for Sm3.92Co0.93Mg1.08, a = 1373.1(4) pm, wR2 = 0.0586, 611 F2 values, 20 variables for Gd3.92CoMg1.08, a = 1362.1(3) pm, wR2 = 0.0576, 590 F2 values, 20 variables for Tb3.77CoMg1.23, a = 1344.8(2) pm, wR2 = 0.0683, 511 F2 values, 20 variables for Dy3.27CoMg1.73, and a = 1343.3(2) pm, wR2 = 0.0560, 542 F2 values, 20 variables for Er3.72CoMg1.28. The cobalt atoms have trigonal prismatic rare earth coordination. Condensation of the CoRE6 prisms leads to a three‐dimensional network which leaves larger voids that are filled by regular Mg4 tetrahedra at a Mg–Mg distance of 316 pm in La4CoMg. The magnesium atoms have twelve nearest neighbors (3 Mg + 9 RE) in icosahedral coordination. In the structures with Nd, Sm, Gd, Tb, Dy, and Er, the RE1 positions which are not involved in the trigonal prismatic network reveal some RE1/Mg mixing and the Sm3.92Co0.93Mg1.08 structure shows small cobalt defects. Considering La4CoMg as representative of all studied systems an analysis of the chemical bonding within density functional theory closely reproduces the crystal chemistry scheme and shows the role played by the valence states of the different constituents in the electronic band structure. Strong bonding interactions were observed between the lanthanum and cobalt atoms within the trigonal prismatic network.  相似文献   

5.
The intermetallic compounds CeRhIn4?xMgx (x = 0.79 and 0.84) were prepared from the elements in sealed tantalum ampoules in a high‐frequency furnace. The samples were investigated by X‐ray powder and single crystal diffraction: LaCoAl4 type, Pmma, a = 829.5(2), b = 433.56(9), c = 740.2(2) pm, wR2 = 0.0458, 651 F2 values, 25 variables for CeRhIn3.21Mg0.79 and a = 831.44(10), b = 433.49(10), c = 741.04(10) pm, wR2 = 0.0543, 915 F2 values, 25 variables for CeRhIn3.16Mg0.84. The indium atoms build up two‐dimensional networks perpendicular to the b axis in an AA stacking sequence leaving slightly distorted trigonal, square and pentagonal prismatic voids for the rhodium, magnesium, and cerium atoms. Both square prismatic voids show small magnesium/indium mixing. The shortest interatomic distances occur for the Rh–Mg contacts (257 pm). Together, the rhodium, indium, and magnesium atoms build up three‐dimensional [RhIn4?xMgx] networks in which the cerium atoms fill distorted pentagonal channels.  相似文献   

6.
The rare earth‐rich compounds RE23Rh7Mg4 (RE = La, Ce, Pr, Nd, Sm, Gd) were prepared by induction‐melting the elements in sealed tantalum tubes. The new compounds were characterized by X‐ray powder diffraction. They crystallize with the hexagonal Pr23Ir7Mg4 type structure, space group P63mc. The structures of La23Rh7Mg4 (a = 1019.1(1), c = 2303.7(4) pm, wR2 = 0.0827, 1979 F2 values, 69 variables), Nd23Rh7Mg4 (a = 995.4(2), c = 2242.3(5) pm, wR2 = 0.0592, 2555 F2 values, 74 variables) and Gd23Rh6.86(5)Mg4 (a = 980.5(2), c = 2205.9(5) pm, wR2 = 0.0390, 2083 F2 values, 71 variables) were refined from single crystal X‐ray diffractometer data. The three crystallographically different rhodium atoms have trigonal prismatic rare earth coordination with short RE–Rh distances (283–300 pm in Nd23Rh7Mg4). The prisms are condensed via common edges, leading to a rigid three‐dimensional network in which isolated Mg4 tetrahedra (312–317 pm Mg–Mg in Nd23Rh7Mg4) are embedded. Temperature dependent magnetic susceptibility data of Ce23Rh7Mg4 indicate Curie‐Weiss behavior with an experimental magnetic moment of 2.52(1) μB/Ce atom, indicative for stable trivalent cerium. Antiferromagnetic ordering is evident at 2.9 K.  相似文献   

7.
CaRhIn, CaRhIn2, and CaIrIn2 were synthesized by reacting the elements in glassy carbon crucibles under an argon atmosphere in a high‐frequency furnace. CaRhIn adopts the TiNiSi structure: Pnma, a = 730.0(4) pm, b = 433.1(2) pm, c = 828.8(4) pm, wR2 = 0.0707, 630 F2 values, 20 variables. The CaRhIn structure consists of strongly puckered Rh3In3 hexagons with Rh–In distances ranging from 273 to 276 pm. Due to the strong puckering each rhodium atom has a distorted tetrahedral indium environment. The calcium atoms fill the channels within the three‐dimensional [RhIn] polyanion. CaRhIn2 and CaIrIn2 crystallize with a new structure type: Pnma, a = 1586.2(3) pm, b = 781.4(2) pm, c = 570.9(1) pm, wR2 = 0.0385, 1699 F2 values, 44 variables for CaRhIn2, and Pnma, a = 1588.7(3) pm, b = 780.8(1) pm, c = 574.0(1) pm, wR2 = 0.0475, 1661 F2 values, 44 variables for CaIrIn2. The structures of CaRhIn2 and CaIrIn2 can be described as an orthorhombically distorted rhodium respectively iridium filled CaIn2. The motif of transition metal filling is similar to that found in MgCuAl2 type compounds CaTIn2 (T = Pd, Pt, Au) and SrTIn2 (T = Rh, Pd, Ir, Pt), but constitute a different tiling. Semi‐empirical band structure calculations for CaRhIn and CaRhIn2 reveal strong bonding In–In and Rh–In but weaker Ca–Rh and Ca–In interactions. Magnetic susceptibility and resistivity measurements of compact polycrystalline samples of CaRhIn2 indicate weak Pauli paramagnetism and metallic conductivity with a room temperature value for the specific resistivity of 230 ± 50 μΩcm.  相似文献   

8.
New indides Ce3Ge0.66In4.34 and Ce11Ge4.74In5.26 were synthesized from the elements by arc‐melting and subsequent annealing at 870 K. Single crystals were grown through special annealing procedures in sealed tantalum tubes in a high‐frequency furnace. Both compounds were investigated on the basis of X‐ray powder and single crystal data: I4/mcm, La3GeIn4 type, a = 848.8(1), c = 1192.0(2) pm, Z = 4, wR2 = 0.0453, 499 F2 values, 17 variables for Ce3Ge0.66In4.34 and I4/mmm, Sm11Ge4In6 type (ordered version of the Ho11Ge10 type), a = 1199.3(2), c = 1662.0(3) pm, wR2 = 0.0507, 1217 F2 values, 41 variables for Ce11Ge4.74In5.26. The Ce3Ge0.66In4.34 structure shows a mixed Ge/In occupancy on the 4c Wyckoff position. This site is octahedrally coordinated by cerium atoms. These octahedra share all edges, leading to a three‐dimensional network. The latter is penetrated by a two‐dimensional indium substructure which consists of flattened tetrahedra at In–In distances of 291 and 300 pm. The Ce11Ge4.74In5.26 structure contains three crystallographically independent germanium sites. The latter are coordinated by eight or nine cerium neighbors. These CN8 and CN9 polyhedra are condensed to a complex network which is penetrated by a three‐dimensional indium network with In–In distances of 301–314 pm. The 16m site shows a mixed In/Ge occupancy. Chemical bonding in both compounds is dominated by the p elements. Both ternaries studied exhibit localized magnetism due to the presence of Ce3+ ions. The compound Ce3GeIn4 remains paramagnetic down to 1.72 K, whereas Ce11Ge4In6 orders ferromagnetically at TC = 7.5 K.  相似文献   

9.
The binary intermetallic compound NiMg2 (own structure type) forms a pronounced solid solution NiMg2?xSnx. The structure of NiMg1.85(1)Sn0.15(1) was refined on the basis of single crystal X‐ray data: P6422, a = 520.16(7), c = 1326.9(1) pm, wR2 = 0.0693, 464 F2 values, and 20 variables. With increasing magnesium/tin substitution, the structure type changes. Crystals with x = 0.22 and 0.40 adopt the orthorhombic CuMg2 type: Fddd, a = 911.0(2), b = 514.6(1), c = 1777.0(4) pm, wR2 = 0.0427, 394 F2 values for NiMg1.78(1)Sn0.22(1), and a = 909.4(1), b = 512.9(1), c = 1775.6(1) pm, wR2 = 0.0445, 307 F2 values for NiMg1.60(1)Sn0.40(1) with 19 variables per refinement. The nickel atoms build up almost linear chains with Ni–Ni distances between 260 and 263 pm in both modifications where each nickel atom has coordination number 10 with two nickel and eight Mg/Sn neighbors. Both magnesium sites in the NiMg2 and CuMg2 type structures show Mg/Sn mixing. The Ni polyhedra are condensed leading to dense layers which show a different stacking sequence in both structure types. The crystal chemical peculiarities of these intermetallics are briefly discussed.  相似文献   

10.
The isotypic indides RE4Pt10In21 (RE = La, Ce, Pr, Nd) were prepared by melting mixtures of the elements in an arc‐furnace under an argon atmosphere. Single crystals were synthesized in tantalum ampoules using special temperature modes. The four samples were studied by powder and single crystal X‐ray diffraction: Ho4Ni10Ga21 type, C2/m, a = 2305.8(2), b = 451.27(4), c = 1944.9(2) pm, β = 133.18(7)°, wR2 = 0.045, 2817 F2 values, 107 variables for La4Pt10In21, a = 2301.0(2), b = 448.76(4), c = 1941.6(2) pm, β = 133.050(8)°, wR2 = 0.056, 3099 F2 values, 107 variables for Ce4Pt10In21, a = 2297.4(2), b = 447.4(4), c = 1939.7(2) pm, β = 132.95(1)°, wR2 = 0.059, 3107 F2 values, 107 variables for Pr4Pt10In21, and a = 2294.7(4), b = 446.1(1), c = 1938.7(3) pm, β = 132.883(9)°, wR2 = 0.067, 2775 F2 values, 107 variables for Nd4Pt10In21. The 8j In2 positions of all structures have been refined with a split model. The In1 sites of the lanthanum and the cerium compound show small defects, leading to the refined composition La4Pt10In20.966(6) and Ce4Pt10In20.909(6) for the investigated crystals. The same position shows Pt/In mixing in the praseodymium and neodymium compound leading to the refined compositions Pr4Pt10.084(9)In20.916(9) and Nd4Pt10.050(9)In20.950(9). All platinum atoms have a tricapped trigonal prismatic coordination by rare‐earth metal and indium atoms. The shortest interatomic distances occur for Pt–In followed by In–In. Together, the platinum and indium atoms build up three‐dimensional [Pt10In21] networks in which the rare earth atoms fill distorted pentagonal tubes. The crystal chemistry of RE4Pt10In21 is discussed and compared with the RE4Pd10In21 indides and isotypic gallides.  相似文献   

11.
New intermetallic rare earth compounds REAuMg (RE = Y, La–Nd, Sm, Eu, Gd–Yb) were synthesized by reaction of the elements in sealed tantalum tubes in a high‐frequency furnace. The compounds were investigated by X‐ray diffraction both on powders and single crystals. Some structures were refined on the basis of single crystal data. The compounds with Y, La–Nd, Sm, and Gd–Tm adopt the ZrNiAl type structure with space group P62m: a = 770.8(2), c = 419.5(1) pm, wR2 = 0.0269, 261 F2 values for PrAuMg, a = 750.9(2), c = 407.7(1) pm, wR2 = 0.0561, 649 F2 values for HoAuMg with 15 variables for each refinement. Geometrical motifs in HoAuMg are two types of gold centered trigonal prisms: [Au1Mg3Ho6] and [Au2Mg6Ho3]. The gold and magnesium atoms form a three‐dimensional [AuMg] polyanion in which the holmium atoms fill distorted hexagonal channels. The magnesium positions show a small degree of magnesium/gold mixing resulting in the refined compositions PrAu1.012(2)Mg0.988(2) and HoAu1.026(3)Mg0.974(3). EuAuMg and YbAuMg contain divalent europium and ytterbium, respectively. Both compounds crystallize with the TiNiSi type structure, space group Pnma: a = 760.6(3), b = 448.8(2), c = 875.8(2) pm, wR2 = 0.0491, 702 F2 values, 22 variables for EuAuMg, and a = 738.4(1), b = 436.2(1), c = 864.6(2) pm, wR2 = 0.0442, 451 F2 values, and 20 variables for YbAuMg. The europium position shows a small degree of europium/magnesium mixing, and the magnesium site a slight magnesium/gold mixing leading to the refined composition Eu0.962(3)Au1.012(3)Mg1.026(3). No mixed occupancies were found in YbAuMg where all sites are fully occupied. In these structures the europium(ytterbium) and magnesium atoms form zig‐zag chains of egde‐sharing trigonal prisms which are centered by the gold atoms. As is typical for TiNiSi type compounds, also in EuAuMg and YbAuMg a three‐dimensional [AuMg] polyanion occurs in which the europium(ytterbium) atoms are embedded. The degree of distortion of the two polyanions, however, is different.  相似文献   

12.
The stannides AuNiSn2 and AuCuSn2 were prepared by melting of the elements in silica ampoules at 1300 K followed by slow cooling to room temperature. The structures of both compounds were refined on the basis of single crystal X‐ray data: , a = 412.41(14), c = 529.24(11) pm, wR2 = 0.0268, 159 F2 values, 10 variables for AuNiSn2 and a = 425.97(17), c = 526.88(15) pm, wR2 = 0.0507, 159 F2 values, 11 variables for AuCuSn2 (twinned crystal, BASF = 0.305(4)). These stannides crystallize with a superstructure of the NiAs type with a complete ordering of the transition metal atoms. They derive from a AuSn subcell structure, where every other layer of octahedral voids in the hexagonal closest packing of the tin atoms is filled by nickel in AuNiSn2 and by copper in AuCuSn2. Due to the symmetry reduction smaller NiSn6/6 (CuSn6/6) and larger AuSn6/6 octahedra alternate along the c axis. The crystal chemistry is discussed on the basis of a group‐subgroup scheme.  相似文献   

13.
New intermetallic rare earth iridium silicides Sm3Ir2Si2, HoIrSi, and YbIrSi were synthesized by reaction of the elements in sealed tantalum tubes in a high‐frequency furnace. The compounds were investigated by X‐ray diffraction both on powders and single crystals. HoIrSi and YbIrSi crystallize in a TiNiSi type structure, space group Pnma: a = 677.1(1), b = 417.37(6), c = 745.1(1) pm, wR2 = 0.0930, 340 F2 values for HoIrSi, and a = 667.2(2), b = 414.16(8), c = 742.8(2) pm, wR2 = 0.0370, 262 F2 values for YbIrSi with 20 parameters for each refinement. The iridium and silicon atoms build a three‐dimensional [IrSi] network in which the holmium(ytterbium) atoms are located in distorted hexagonal channels. Short Ir–Si distances (246–256 pm in YbIrSi) are indicative for strong Ir–Si bonding. Sm3Ir2Si2 crystallizes in a site occupancy variant of the W3CoB3 type: Cmcm, a = 409.69(2), b = 1059.32(7), c = 1327.53(8) pm, wR2 = 0.0995, 383 F2 values and 27 variables. The Ir1, Ir2, and Si atoms occupy the Co, B2, and B1 positions of W3CoB3, leading to eight‐membered Ir4Si4 rings within the puckered two‐dimensional [IrSi] network. The Ir–Si distances range from 245 to 251 pm. The [IrSi] networks are separated by the samarium atoms. Chemical bonding in HoIrSi, YbIrSi, and Sm3Ir2Si2 is briefly discussed.  相似文献   

14.
The high‐pressure (HP) modification of CePdSn was synthesized under multianvil high‐pressure (10.5 GPa) high‐temperature (1100 °C) conditions from the normal‐pressure (NP) modification. The structures of both modifications were studied by X‐ray powder and single crystal diffraction: TiNiSi type, Pnma, a = 754.1(2), b = 470.6(1), c = 798.4(3) pm, wR2 = 0.0333, 945 F2 values, 20 variables for NP‐CePdSn and ZrNiAl type, , a = 760.03(5), c = 416.06(3) pm, wR2 = 0.0443, 248 F2 values, 13 variables for HP‐CePdSn. The structural chemistry of both modifications is goverened by platinum centered trigonal prisms. The platinum and tin atoms in NP‐CePdSn and HP‐CePdSn build up a three‐dimensional [PdSn] network in which the cerium atoms fill channels. Susceptibility measurements on HP‐CePdSn reveal an experimental magnetic moment of 2.55(1) μB/Ce atom in the paramagnetic region. At 5 K a paramagnetic‐to‐antiferromagnetic transition is evident from magnetization and specific heat measurements.  相似文献   

15.
The ternary indium compounds RE4Pd10In21 (RE = La, Ce, Pr, Nd, Sm) were synthesized from the elements in glassy carbon crucibles in a high‐frequency furnace. Single crystals of Sm4Pd10In21 were obtained from an indium flux. An arc‐melted precursor alloy of the starting composition ~SmPd3In6 was annealed with a slight excess of indium at 1200 K followed by slow cooling (5 K/h) to 870 K. All compounds were investigated by X‐ray powder diffraction and the structures were refined from single crystal diffractometer data. The RE4Pd10In21 indides are isotypic with Ho4Ni10Ga21, space group C2/m: a = 2314.3(2), b = 454.70(7), c = 1940.7(2) pm, β = 133.43(2)°, wR2 = 0.0681, 1678 F2 values for La4Pd10In21, a = 2308.2(1), b = 452.52(4), c = 1944.80(9) pm, β = 133.40(1)°, wR2 = 0.0659, 1684 F2 values for Ce4Pd10In21, a = 2303.8(2), b = 450.78(4), c = 1940.6(1) pm, β = 133.39(1)°, wR2 = 0.0513, 1648 F2 values for Pr4Pd10In21, a = 2300.2(2), b = 449.75(6), c = 1937.8(2) pm, β = 133.32(1)°, wR2 = 0.1086, 1506 F2 values for Nd4Pd10In21, and a = 2295.6(2), b = 447.07(4), c = 1935.7(1) pm, β = 133.16(1)°, wR2 = 0.2291, 2350 F2 values for Sm4Pd10In21, with 108 variables per refinement. All palladium atoms have a trigonal prismatic coordination. The strongest bonding interactions occur for the Pd—In and In—In contacts. The structures are composed of covalently bonded three‐dimensional [Pd10In21] networks in which the rare earth metal atoms fill distorted pentagonal channels. The crystal chemistry and chemical bonding in these indides is briefly discussed. Magnetic susceptibility measurements show diamagnetism for La4Pd10In21 and Curie‐Weiss paramagnetism for Ce4Pd10In21, Pr4Pd10In21, and Nd4Pd10In21. The neodymium compound orders antiferromagnetically at TN = 4.5(2) K and undergoes a metamagnetic transition at a critical field of 1.5(2) T. All the RE4Pd10In21 indides studied are metallic conductors.  相似文献   

16.
La3Au4In7 was prepared by arc‐melting of the elements and subsequent annealing at 970 K. X‐ray diffraction of powders and single crystals yielded I2/m11, mI28, a = 460.42(5) pm, b = 1389.5(1) pm, c = 1039.6(2) pm, α = 90.77(1)°, wR2 = 0.0621, 1089 F2 values, 46 variables. The structure of La3Au4In7 is of a new type. It may be considered as a monoclinically distorted, ordered variant of the La3Al11 type. The structural relation with the family of BaAl4 related compounds is discussed on the basis of a group‐subgroup scheme. The gold and indium atoms in La3Au4In7 build a three‐dimensional [Au4In7] polyanion in which the lanthanum atoms fill distorted pentagonal and hexagonal channels. Within the polyanion short Au–In and In–In distances are indicative of strongly bonding Au–In and In–In interactions.  相似文献   

17.
New intermetallic rare earth compounds LaRhMg, CeRhMg, PrRhMg, and NdRhMg were prepared by reaction of the elements in sealed tantalum tubes in a high‐frequency furnace. The compounds were investigated by X‐ray diffraction both on powders and single crystals. LaRhMg crystallizes with the LaNiAl type structure, space group Pnma, Z = 8, a = 760.1(2), b = 419.92(8), c = 1702.6(2) pm, wR2 = 0.0482, 740 F2 values and 38 variable parameters. The cerium compound adopts the ZrNiAl structure: P6¯2m, Z = 3, a = 752.3(1), c = 417.6(1) pm, wR2 = 0.0497, 250 F22 values and 17 variable parameters. PrRhMg and NdRhMg crystallize with the TiNiSi type: Pnma, Z = 4, a = 721.62(7), b = 415.98(4), c = 869.47(8) pm, wR2 = 0.1864, 440 F2 values, 20 variables for PrRhMg and a = 720.6(1), b = 417.6(1), c = 868.8(1) pm, wR2 = 0.0779, 425 F2 values, 22 variables for NdRhMg. Refinements of the occupancy parameters revealed mixed Mg/Rh occupancy for the magnesium sites of the cerium and the neodymium compound leading to the compositions CeRh1.262(8)Mg0.738(8) and NdRh1.114(9)Mg0.886(9) for the investigated single crystals. From a geometrical point of view, the four crystal structures are built up from different rhodium centered trigonal prisms. The rhodium and magnesium atoms form three‐dimensional [RhMg] networks in which the rare earth metal atoms are located in different types of channels. The networks show Rh—Mg and Mg—Mg bonding.  相似文献   

18.
LiRuSn4, LiRhSn4, and LiIrSn4 were prepared by reaction of the elements in sealed tantalum ampoules at 1220 K. The tubes were subsequently annealed at 870 K for one week. The three stannides were investigated by X‐ray diffraction on powders and single crystals and the structures were refined from single crystal data: I4/mcm, a = 662.61(3), c = 1116.98(7) pm, wR2 = 0.0730, 283 F2 values for LiRuSn4, a = 658.73(5), c = 1136.4(1) pm, wR2 = 0.0532, 313 F2 values for LiRhSn4 and a = 657.34(5), c = 1130.4(1) pm, wR2 = 0.0343, 176 F2 values for LiIrSn4 with 11 variables for each refinement. LiRuSn4, LiRhSn4, and LiIrSn4 crystallize with a ternary ordered variant of the PdGa5 structure. The transition metal (T) atoms have a square antiprismatic tin environment and they form two‐dimensional [TSn4] polyanions with relatively short Ru—Sn (279 pm), Rh—Sn (280 pm), and Ir—Sn (280 pm) distances. The lithium atoms connect the polyanionic [TSn4] layers. They are located in square prismatic voids formed by tin atoms. The crystal chemistry and chemical bonding of these stannides is briefly discussed.  相似文献   

19.
The alkaline earth metal compounds AETMg2 and AETCd2 (AE = Ca, Sr; T = Pd, Ag, Pt, Au) were synthesized by induction‐melting (or in muffle furnaces) of the elements in sealed niobium ampoules. The new phases were characterized by powder X‐ray diffraction. The structures of SrPdMg2 and SrPdCd2 were investigated by X‐ray diffraction on single crystals: MgCuAl2 type, Cmcm, a = 436.42(4), b = 1130.1(1), c = 820.54(7) pm, wR2 = 0.0115, 511 F2 values for SrPdMg2 and a = 443.5(2), b = 1063.0(2), c = 810.2(2) pm, wR2 = 0.0296, 386 F2 values for SrPdCd2 with 16 variables for each refinement. The magnesium and cadmium atoms build up [TMg2] and [TCd2] polyanionic networks, which leave cavities for the calcium and strontium atoms. The bonding variations within the polyanions, which are mainly influenced by the length of the b axis are discussed. Ab initio calculations of electronic structure, charge densities, and chemical bonding, characterize SrPdMg2 with a larger cohesive energy than SrPdCd2. This is illustrated by larger bonding Pd–Mg interactions, opposite to compensating Pd–Cd between bonding and antibonding states.  相似文献   

20.
LaCoAl4 type EuIrIn4 was synthesized by induction-melting of the elements in a sealed tantalum ampoule, followed by annealing of the sample in a high-frequency or in a muffle furnace. The EuIrIn4 structure was refined from single-crystal X-ray diffraction data: Pmma, a = 860.65(3), b = 430.33(6), c = 757.65(7) pm, wR = 0.0748, 633 F2 values and 24 variables. The striking building units are iridium-centered trigonal prisms of indium atoms, distorted bcc indium cubes and a pentagonal prismatic indium coordination of the europium atoms. Within the three-dimensional [IrIn4]2– polyanionic network the Ir–In and In–In distances range from 260–288 pm and 306–332 pm, respectively. The divalent ground state of europium was manifested through magnetic [7.96(1) μB / Eu atom, TN = 7.9(1) K] and 151Eu Mössbauer spectroscopic data [δ = –10.54(2) mm · s–1; Bhf = 19.1(1) T at 6 K].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号