首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pilot calculations have been performed to study the effect of surrounding plasma on several doubly excited states for a few astrophysically important, highly stripped ions of helium isoelectronic sequence Al11+, Si12+, P13+, S14+, and Cl15+. The transitions from 1s2:1Se → 2s2:1Se, 2p2:1De, 2s2p:1Po, 2s3d:1De and 2p3d:1Fo are studied. The effect of the plasma background is taken care of using the Debye screening model which admits of a wide variety of plasma conditions. Transition energies as well as the analytical wave functions of the doubly excited states have been obtained from a study of the pole positions of the collective oscillation modes in the two‐electron charge cloud under a time‐dependent harmonic perturbation. The response properties of the system are analyzed from the linearized version of a suitably constructed variational functional. Most of the calculated data are new. Our results agree well with the relatively few existing experimental and theoretical data for the free ions. The general trend of the results show systematic behavior with respect to increased plasma strength, and the data may be useful from the astrophysical viewpoint. The doubly excited state wave functions have been used to calculate the Coulomb repulsion integrals to check their consistency and may be useful for evaluating other physical properties connected with transitions and also estimating the rate coefficients for dielectronic recombination processes, which play a major role in the diagnostic determination of high‐temperature plasmas. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

2.
We have investigated the 1snd1,3D (3 ≤ n ≤ 7) state energies of helium atom embedded in weakly coupled plasma environments using the Rayleigh–Ritz variational method. The effect of the plasma environment is taken care of using a Debye screening model. A correlated wave function involving exponential expansion has been used to represent correlation between the charge particles. The bound 1snd1,3D (3 ≤ n ≤ 7) state energies of helium for various Debye lengths along with the excitation energies of few singlet and triplet states are reported. Our results are useful references to atomic physics, plasma physics, and astrophysics research communities. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

3.
Pilot calculations on the frequency-dependent nonlinear response property, viz. the electric dipole hyperpolarizability of atomic hydrogen under quantum plasma environment, have been performed using an external oscillatory electric field. Fourth-order perturbation theory within a variational scheme is adopted to obtain the hyperpolarizability within and beyond normal dispersion region. Two-photon absorption from the ground state is explicitly obtained from the pole positions of nonlinear response of the system and studied up to principal quantum number n = 4 . Ground and perturbed wave functions of appropriate symmetries are represented by linear combination of Slater-type orbitals. Exponential cosine-screened Coulomb potential is used to simulate the quantum plasma environment. With respect to plasma strength, the nonlinear response properties are considerably enhanced. Results are compared with those under classical plasma environment represented by screened Coulomb potential. Departure from Coulomb potential results in lifting of the accidental degeneracy in the respective two-photon excited states beyond n = 2 . For free hydrogen atom, the transition energies and the radial density profiles of the respective two-photon excited states match exactly with those obtained from analytical wave functions.  相似文献   

4.
Systematic investigations have been performed to study the effect of strongly coupled plasma on the dynamic polarizabilities, low‐lying energy levels, oscillator strengths, and transition probabilities for the helium isoelectronic ions Li+, Be2+, B3+, C4+, N5+, O6+, F7+, and Ne8+. An ion‐sphere (IS) model of the plasma has been adopted and time‐dependent perturbation theory has been applied to calculate the energy levels and other transition properties. Systematic trend is observed for the spectroscopic properties along the isoelectronic sequence under a given plasma strength and also for a given ion under different plasma strengths. The ionization potential for a given ion is found to decrease, and the number of bound excited states has become finite under increased plasma strengths. The spectral line shifts under such plasma environment have been calculated. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

5.
n1,3S (n = 1 ? 4) states for atomic three‐body systems are studied with the Angular Correlated Configuration Interaction method. A recently proposed angularly correlated basis set is used to construct, simultaneously and with a single diagonalization, ground and excited states wave functions which: (i) satisfy exactly Kato cusp conditions at the two‐body coalescence points; (ii) involve only linear parameters; (iii) show a fast convergency rate for the energy; and (iv) form an orthogonal set. The efficiency of the method is illustrated by the study a variety of three‐body atomic systems [m m m] with two negatively charged light particles, with diverse masses m and m, and a heavy positively charged nucleus m. The calculated ground 11S and excited n1,3S (n = 2 ? 4) state energies are compared with those given in the literature, when available. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

6.
The one electron systems H, H , and HeH confined by an impenetrable spheroidal cavity are revisited in the frame of the Lagrange‐mesh method. The Born–Oppenheimer approximation where the nuclei are clamped at the foci is considered. Benchmark results of the total energy are obtained as a function of the interfocal distance R and the eccentricity of the cavity . Dipole oscillator strengths are calculated for the molecular ions H and HeH .  相似文献   

7.
The electron affinities of organic molecules obeying Hückel's rule of aromaticity are vanishingly small, if not negative. For example, benzene, a classic example of an aromatic molecule, has an electron affinity of −1.15 eV. Using density functional theory, we have systematically calculated the electron affinities and vertical detachment energies of C6H6 by substituting H with halogen (F) and superhalogen (BO2) moieties, as well as replacing one of the C atoms with B. The ground state geometries were obtained by examining about 330 isomers. The electron affinities are found to steadily increase with these substitutions/replacements, even surpassing that of Cl, the element with the highest electron affinity in the periodic table, in the case of C5BH(BO2)5. In some special cases such as C6H5(BO2) the electron affinity and vertical detachment energy differ by as much as 5 eV, indicating substantial changes in the geometry as the electron is removed from the anion. We hope that the ability to change the negative electron affinity of C6H6 to large positive values by substituting H and/or replacing C atom will motivate experimental studies.  相似文献   

8.
9.
Assuming the quasi-crystalline model for the multi-component liquid systems, the effective Debye temperature has been investigated from the density and sound velocity measurements of three ternary and three quaternary liquid systems containing n-alkanes over the entire range of mole fractions at 298.15?K. The results obtained have been interpreted in terms of intermolecular interactions and modifications of the internal structure of the mixtures.  相似文献   

10.
11.
Dilute concentrations of 1,1,1-trichloroethane (TCA) in air were decomposed in an electron beam generated plasma reactor. The energy required for high levels of TCA decomposition (greater than 90%) was determined as a function of inlet concentration. For 99%, decomposition of TCA, ez300 eV/molecule at 250 ppm inlet concentration, and ¨~100 eV/molecule at 3000 ppm. A radical reaction mechanism is proposed which accounts for the formation of the major reaction products: 1,1-dichloroethylene, HCl, chloroacetylchloride, CO2, and COCl2. A model is derived based on first-order inhibited kinetics; a fit of the data to the model shows that at high decomposition fractions, radical scavenging by reaction products is a significant inhibitor of TCA decomposition.This work was supported by the Contaminant Plume Containment and Remediation Focus Area, Office of Environmental Management, U.S. Department of Energy.Also affiliated with the Department of Nuclear Engineering.  相似文献   

12.
In this article, the angular correlated configuration interaction method previously introduced by some of the authors is extended to three‐body atomic systems with general masses. A recently proposed angularly correlated basis set is used to construct ground state wave functions which: (i) satisfy exactly Kato cusp conditions at the two‐body coalescence points; (ii) have only linear coefficients; and (iii) show a fast convergency rate for the energy. The efficiency of the construction is illustrated by the study of the negatively charged hydrogen‐like systems (H?, T?, D?, 1H?, and Mu?), neutral helium‐like systems (e?e? He+2,e?e? 4He+2, e?e? 3He+2, e?μ? He+2, e?μ ?4He+2, and e?μ? 3He+2), and positively charged lithium‐like systems (e?e? Li+3, e?e? 7Li+3, e?e? 6Li+3, e?μ? Li+3, e?μ? 7Li+3, and e?μ? 6Li+3). The ground state energies and other mean values are compared with those given in the literature, when available. Wave functions with a moderate number of (20 maximum) linear coefficients are given explicitly; they are sufficiently simple and accurate to be used in practical calculations of atomic collision in which multidimensional integrations are involved. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

13.
The addition of electrons to form gas-phase multiply charged anions (MCAs) normally requires sophisticated experiments or calculations.In this work, the factors stabilizing the MCAs, the maximum electron uptake of gas-phase molecules, X, and the electronic stability of MCAs XQ-, are discussed. The drawbacks encountered when applying computational and/or conceptual density functional theory (DFT) to MCAs are highlighted. We develop and test a different model based on the valence-state concept. As in DFT, the electronic energy, E(N, vex), is a continuous function of the average electron number, N, and the external potential, vex, of the nuclei. The valence-state-parabola is a second-order polynomial that allows extending E(N, vex) to dianions and higher MCAs. The model expresses the maximum electron acceptance, Qmax, and the higher electron affinities, AQ, as simple functions of the first electron affinity, A1, and the ionization energy, I, of the "ancestor" system. Thus, the maximum electron acceptance is Qmax, calc = 1 + 12A1/7(I -A1). The ground-state parabola model of the conceptual DFT yields approximately half of this value, and it is termed Qmax, GS = ${}^{1}\!\!\diagup\!\!{}_{2}\; $ + A1/(I -A1). A large variety of molecules are evaluated including fullerenes, metal clusters, super-pnictogens, super-halogens (OF3), super-alkali species (OLi3), and neutral or charged transition-metal complexes, ABmLn0/+/-. The calculated second electron affinity A2, calc = A1-(7/12)(I -A1) is linearly correlated to the literature references A2, lit with a correlation coefficient R = 0.998. A2 or A3 values are predicted for further 24 species. The appearance sizes, nap3-, of triply charged anionic clusters and fullerenes are calculated in agreement with the literature.  相似文献   

14.
Electron energy distribution functions (EEDF) and related properties in the bulk region of the rf CO plasma at the reduced rf field frequency /p0=×107 sec–1 torr–1 have been calculated by solving the time-dependent spatially homogeneous Boltzmann equation in the presence of second-kind collisions and have been interpreted on a microphysical basis. The results show that second-kind collisions (vibrational and electronic) strongly affect the temporal evolution of EEDF, of the mean energy, and of the mean collision frequencies for vibrational and electronic excitation processes, as well as for ionization. In particular, second-kind collisions in the CO rf bulk plasma strongly decrease the modulation of the mean ionization frequency during its periodical alteration in the rf field. Furthermore, the effect of second-kind collisions on an approximate determination of the time-averaged EEDF in the rf bulk plasma using the so-called effective-field appriximation has been estimated.  相似文献   

15.
The effect of strongly coupled plasma on the energy levels, dynamic polarizabilities, oscillator strengths, and transition probabilities of a number of hydrogenic ions is estimated, using the ion‐sphere (IS) model. The transition properties are calculated using time‐dependent variation perturbation theory. The variation of the atomic properties under different plasma densities are analyzed. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

16.
17.
The substituent effect of electron‐withdrawing groups on electron affinity and gas‐phase basicity has been investigated for substituted propynl radicals and their corresponding anions. It is shown that when a hydrogen of the α‐CH3 group in the propynyl system is substituted by an electron‐withdrawing substituent, electron affinity increases, whereas gas‐phase basicity decreases. These results can be explained in terms of the natural atomic charge of the terminal acetylene carbon of the systems. The calculated electron affinities are 3.28 eV (?C?C? CH2F), 3.59 eV (?C?C? CH2Cl) and 3.73 eV (?C?C? CH2Br), and the gas‐phase basicities of their anions are 359.5 kcal/mol (?:C?C? CH2F), 354.8 kcal/mol (:C?C? CH2Cl) and 351.3 kcal/mol (?:C?C? CH2Br). It is concluded that the larger the magnitude of electron‐withdrawing, the greater is the electron affinity of radical and the smaller is the gas‐phase basicity of its anion. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

18.
Satellite [M + 2](+*) and [M + 3](+) peaks accompanying the common peak of the protonated molecule [M + H](+) that are known to indicate the occurrence of a reduction process were observed in the fast atom bombardment (FAB) mass spectra of imidazophenazine dye derivatives in glycerol matrix. The distribution of the abundances in the [M + nH](+) peak group varied noticeably for different derivatives. This indicated different levels of the reduction depending on the different structure variations of the studied molecules. In the search for correlations between the mass spectral pattern and the structural features of the dyes, ab initio HF/6-31++G** quantum chemical calculations were performed. They revealed that the abundances of the [M + 2](+*) and [M + 3](+) ions show growth proportional to the decrease of the energy of the lowest unoccupied molecular orbital, i.e. proportional to the increase of the electron affinity of the dye molecule. A method for rapid screening of reductive properties of sets of dye derivatives on the basis of the FAB mass spectral data is discussed.  相似文献   

19.
To explore the nature of electron attachment to guanine‐centered DNA single strands in the presence of a polarizable medium, a theoretical investigation of the DNA oligomer dinucleoside phosphate deoxyguanylyl‐3′,5′‐deoxyguanosine (dGpdG) was performed by using density functional theory. Four different electron‐distribution patterns for the radical anions of dGpdG in aqueous solution have been located as local minima on the potential energy surface. The excess electron is found to reside on the proton of the phosphate group (dGpH?dG), or on the phosphate group (dGp.?dG), or on the nucleobase at the 5′ position (dG.?pdG), or on the nucleobase at the 3′ position (dGpdG.?), respectively. These four radical anions are all expected to be electronically viable species under the influence of the polarizable medium. The predicted energetics of the radical anions follows the order dGp.?dG>dG.?pdG>dGpdG.?>dGpH?dG. The base–base stacking pattern in DNA single strands seems unaffected by electron attachment. On the contrary, intrastrand H‐bonding is greatly influenced by electron attachment, especially in the formation of base‐centered radical anions. The intrastrand H‐bonding patterns revealed in this study also suggest that intrastrand proton transfer might be possible between successive guanines due to electron attachment to DNA single strands.  相似文献   

20.
We carried out computational studies of OPX3 and SPX3 (X = Br and I) molecules and their corresponding anions using density functional theory, Møller‐Plesset, and CCSD(T) methods with newly developed model core potentials (MCP). Reliabilities of the MCP were demonstrated by comparing experimental and calculated results. We computed the geometric structure, electron affinities, and electrostatic moments using systematic sequences of the dzp‐, tzp‐, and qzp‐quality basis sets. Both C3v and Cs symmetries were assumed to ascertain that minima on the potential energy surface were found. Infrared and Raman frequencies were calculated and compared with available experimental data. Natural population analyses were performed and used to determine distribution of the extra electron in anions. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号