首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A design model for a chain system of N elastically linked rigid bodies with a spheroidal gravity-friction damper is proposed. The Lagrange–Painlevé equations of the first kind are used to construct nonlinear dynamical models of a mechanical system undergoing translational vibrations about the equilibrium position. The conditions under which the system moves in one plane are established. The double nonstationary phase–frequency resonance of a system with N = 2 is analyze. After the numerical integration of the systems of differential equations, the phase–frequency surfaces are plotted and examined for several combinations of system parameters under two-frequency loading  相似文献   

2.
An application of bi-orthogonal decomposition to an experiment on the transition of the boundary layer over a rotating disk is performed and compared with linear, wavelet and Fourier analyses. We show how this bi-orthogonal decomposition can detect the results of these three methods, the critical Reynolds number (R c = 268) and the first transition Reynolds number (R t=445), and a new Reynolds number (R = 365) where the entropy fluctuates significantly, before nonlinear effects appear.  相似文献   

3.
4.
A new discrete simulation Monte Carlo (DSMC) collision model for molecules possessing an integer number of classical degrees of freedom for molecular structure energy is proposed. The total molecular energy (translation plus molecular structure) is represented by a velocity in five-dimensional space. Each collision is an elastic N-sphere collision in N-space, where N= 3, 4, or 5. For N=5, there is a maximum chance of exchange of energy between the two components of velocity, which represent the rotation energy and the three components that represent the translational velocity. For N=3, there is no change in the rotation energy of each molecule, and for N=4, there is an intermediate chance that rotation and translation energy will be exchanged. The exchange probability ϕ can be set to give the desired rotational relaxation rate. To achieve any realistic viscosity μ(T), the N-space model must be coupled with a modified collision procedure known as ν-DSMC. The new model is shown to match the results of molecular dynamics calculations for the internal structure of a Mach 7 shock, with a saving of about 20% in CPU time compared to standard DSMC using the standard Borgnakke-Larsen exchange model.  相似文献   

5.
Fokas and Yortsos (SIAM J. Appl. Math. 42(2), 318–332, 1982) and Yortsos and Fokas (SPEJ 23(1), 115–124, 1983) presented the only published exact solution of the linear waterflood problem that includes capillary effects. Despite the importance of this breakthrough, their approach has largely been disregarded due to the perceived limitations that it presented in modeling real physical situations. In this article, we show that by appropriately normalizing relevant parameters of the governing equation involved, a substantial level of the limitations is taken care of. The resultant governing equation obtained is one in terms of a parameter N M related to the mobility ratio and another parameter N V, representing a ratio of the viscous to capillary forces. The results of the explicit solutions obtained indicate that these two parameters are indeed the controlling parameters of the flow, and that the capillary effects are practically non-existent even when N V = 100. These analytical results serve a very useful utility in validating numerical simulators.  相似文献   

6.
Linear vibration absorbers are a valuable tool used to suppressvibrations due to harmonic excitation in structural systems. Whilelimited evaluation of the performance of nonlinear vibrationabsorbers for nonlinear structures exists in the literature forsingle mode structures, none exists for multi-mode structures.Consequently, nonlinear multiple-degrees-of-freedom structures areevaluated. The theory of nonlinear normal modes is extended toinclude consideration of modal damping, excitation and smalllinear coupling, allowing estimation of vibration absorberperformance. The dynamics of the N +1-degrees-of-freedom system areshown to reduce to those of a two-degrees-of-freedom system on afour-dimensional nonlinear modal manifold, thereby simplifying theanalysis. Quantitative agreement is shown to require a higher-order model which is recommended for future investigation.  相似文献   

7.
Taylor-Hood finite elements provide a robust numerical discretization of Navier-Stokes equations (NSEs) with arbitrary high order of accuracy in space. To match the accuracy of the lowest degree Taylor-Hood element, we propose a very efficient time-stepping methods for unsteady flows, which are based on high-order semi-implicit backward difference formulas (SBDF) and the inclusion of grad -div term in the NSE. To mitigate the impact on the numerical accuracy (in time) of the extrapolation of the nonlinear term in SBDF, several variants of nonlinear extrapolation formulas are investigated. The first approach is based on an extrapolation of the nonlinear advection term itself. The second formula uses the extrapolation of the velocity prior to the evaluation of the nonlinear advection term as a whole. The third variant is constructed such that it produces similar error on both velocity and pressure to that with fully implicit backward difference formulas methods at a given order of accuracy. This can be achieved by fixing one-order higher than usually done in the extrapolation formula for the nonlinear advection term, while keeping the same extrapolation formula for the time derivative. The resulting truncation errors (in time) between these formulas are identified using Taylor expansions. These truncation error formulas are shown to properly represent the error seen in numerical tests using a 2D manufactured solution. Lastly, we show the robustness of the proposed semi-implicit methods by solving test cases with high Reynolds numbers using one of the nonlinear extrapolation formulas, namely, the 2D flow past circular cylinder at Re=300 and Re = 1000 and the 2D lid-driven cavity at Re = 50 000 and Re = 100 000. Our numerical solutions are found to be in a good agreement with those obtained in the literature, both qualitatively and quantitatively.  相似文献   

8.
Summary An analysis is presented of a non-linear system with one degree of freedom, in which the restoring force is expressed by the product of a periodic function of time and a non-linear function of deflection. In such a system there can occur not only the expected parametric resonances of the ordern (n=1,2, ...) but resonances of the order 1/N (N=2,3, ...) as well.
übersicht Ein nichtlineares System mit einem Freiheitsgrad, in dem die Rückstellkraft das Produkt einer periodischen Funktion der Zeit und einer nichtlinearen Funktion der Abweichung ist, wird analysiert. In diesem Fall k?nnen neben den erwarteten Parameterresonanzen der Ordnungn (n=1,2, ...) noch die Resonanzen der Ordnung 1/N (N=2,3, ...) erscheinen.


Herrn Professor Dr. K. Klotter zum 75. Geburtstag gewidmet.  相似文献   

9.
The nonlinear response characteristics for a dynamic system with a geometric nonlinearity is examined using a multibody dynamics method. The planar system is an initially straight clamped-clamped beam subject to high frequency excitation in the vicinity of its third natural mode. The model includes a pre-applied static axial load, linear bending stiffness and a cubic in-plane stretching force. Constrained flexibility is applied to a multibody method that lumps the beam into N elements for three substructures subjected to the nonlinear partial differential equation of motion and N-1 linear modal constraints. This procedure is verified by d'Alembert's principle and leads to a discrete form of Galerkin's method. A finite difference scheme models the elastic forces. The beam is tuned by the axial force to obtain fourth order internal resonance that demonstrates bimodal and trimodal responses in agreement with low and moderate excitation test results. The continuous Galerkin method is shown to generate results conflicting with the test and multibody method. A new checking function based on Gauss' principle of least constraint is applied to the beam to minimize modal constraint error.  相似文献   

10.
The three-dimensional weight function method recently developed by the authors is used to determine stress intensity factors for two symmetric quarter-elliptical corner cracks at a hole in a wide finite-thickness plate subjected to remote tensile loading. The geometry parameters considered arer/t=0.5, 1, 2;a/c=0.2, 0.5, 1, 2;a/t=0.2, 0.5 withinc/r=2. The results are compared, where possible, with other solutions available in the literature. Generally good agreement is observed. The effect of an approximation of the two-dimensional unflawed stress distribution on the accuracy of stress intensity factors by the weight function method is discussed.  相似文献   

11.
We study theoretically and computationally the incompressible, non-conducting, micropolar, biomagnetic (blood) flow and heat transfer through a two-dimensional square porous medium in an (x,y) coordinate system, bound by impermeable walls. The magnetic field acting on the fluid is generated by an electrical current flowing normal to the xy plane, at a distance l beneath the base side of the square. The flow regime is affected by the magnetization B 0 and a linear relation is used to define the relationship between magnetization and magnetic field intensity. The steady governing equations for x-direction translational (linear) momentum, y-direction translational (linear) momentum, angular momentum (micro-rotation) and energy (heat) conservation are presented. The energy equation incorporates a special term designating the thermal power per unit volume due to the magnetocaloric effect. The governing equations are non-dimensionalized into a dimensionless (ξ,η) coordinate system using a set of similarity transformations. The resulting two point boundary value problem is shown to be represented by five dependent non-dimensional variables, f ξ  (velocity), f η (velocity), g (micro-rotation), E (magnetic field intensity) and θ (temperature) with appropriate boundary conditions at the walls. The thermophysical parameters controlling the flow are the micropolar parameter (R), biomagnetic parameter (N H ), Darcy number (Da), Forchheimer (Fs), magnetic field strength parameter (Mn), Eckert number (Ec) and Prandtl number (Pr). Numerical solutions are obtained using the finite element method and also the finite difference method for Ec=2.476×10−6 and Prandtl number Pr=20, which represent realistic biomagnetic hemodynamic and heat transfer scenarios. Temperatures are shown to be considerably increased with Mn values but depressed by a rise in biomagnetic parameter (N H ) and also a rise in micropolarity (R). Translational velocity components are found to decrease substantially with micropolarity (R), a trend consistent with Newtonian blood flows. Micro-rotation values are shown to increase considerably with a rise in R values but are reduced with a rise in biomagnetic parameter (N H ). Both translational velocities are boosted with a rise in Darcy number as is micro-rotation. Forchheimer number is also shown to decrease translational velocities but increase micro-rotation. Excellent agreement is demonstrated between both numerical solutions. The mathematical model finds applications in blood flow control devices, hemodynamics in porous biomaterials and also biomagnetic flows in highly perfused skeletal tissue. Dedicated to Professor Y.C. Fung (1919-), Emeritus Professor of Biomechanics, Bioengineering Department, University of California at San Diego, USA for his seminal contributions to biomechanics and physiological fluid mechanics over four decades and his excellent encouragement to the authors, in particular OAB, with computational biofluid dynamics research.  相似文献   

12.
In this paper, the periodic solutions of the smooth and discontinuous (SD) oscillator, which is a strongly irrational nonlinear system are discussed for the system having a viscous damping and an external harmonic excitation. A four dimensional averaging method is employed by using the complete Jacobian elliptic integrals directly to obtain the perturbed primary responses which bifurcate from both the hyperbolic saddle and the non-hyperbolic centres of the unperturbed system. The stability of these periodic solutions is analysed by examining the four dimensional averaged equation using Lyapunov method. The results presented herein this paper are valid for both smooth ( α > 0) and discontinuous ( α = 0) stages providing the answer to the question why the averaging theorem spectacularly fails for the case of medium strength of external forcing in the Duffing system analysed by Holmes. Numerical calculations show a good agreement with the theoretical predictions and an excellent efficiency of the analysis for this particular system, which also suggests the analysis is applicable to strongly nonlinear systems.  相似文献   

13.
Thermal buoyant air inside a modified Rayleigh–Bénard (RB) cavity bounded by a lower flat plate and an inverted‐V upper plate has been investigated numerically using the finite‐volume method. The second‐order‐accurate QUICK and SIMPLE schemes were used for the discretization of the convective terms and the pressure–velocity coupling in the set of conservation equations, respectively. The problem under study is controlled by two parameters: (1) the Rayleigh number ranging from 103 to 106 and (2) the relative height of the vertical sidewalls d. In reference to the latter, it varies from one limiting case corresponding to the standard RB cavity (a rectangle with d = 1) to another limiting case represented by an isosceles triangular cavity where d = 0. The numerical results for the velocity and temperature fields are presented in terms of streamlines, isotherms, local and mean heat fluxes. An additional effort was devoted to determine the critical Ra values characterizing the transition from symmetrical to asymmetrical buoyant airflow responsive to incremental changes in Ra. For purposes of engineering design, a general correlation equation for the Nusselt number in terms of the pertinent Ra and d was constructed using nonlinear multiple regression theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
We consider the regularity of weak solutions of a Stokes-type system of partial differential equations in 2D, which describes the stationary and also slow flow of an incompressible fluid. Here the nonlinear differential operator related to the stress tensor is generated by a potential H(ε) = h(|ε|) acting on symmetric (2 × 2)-matrices, where h is a N-function of rather general type leading to a non-uniformly elliptic problem.  相似文献   

15.
In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation ∇2 u+u+ɛu 3 =b. Results obtained in an example have a good agreement with those by FEM and show the applicability and simplicity of dual reciprocity method(DRM)in solving nonlinear differential equations.  相似文献   

16.
The problem of robust global stabilization by nonlinear boundary feedback control for the Korteweg–de Vries–Burgers equation on the domain [0,1] is considered. The main purpose of this paper is to derive nonlinear robust boundary control laws which make the system robustly globally asymptotically stable in spite of uncertainty in the system parameters. Furthermore, we show that the proposed boundary controllers guarantee L 2-robust exponential stability, L -robust asymptotic stability and boundedness in terms of both L 2 and L .  相似文献   

17.
The Darcy Model with the Boussinesq approximation is used to study natural convection in a horizontal annular porous layer filled with a binary fluid, under the influence of a centrifugal force field. Neumann boundary conditions for temperature and concentration are applied on the inner and outer boundary of the enclosure. The governing parameters for the problem are the Rayleigh number, Ra, the Lewis number, Le, the buoyancy ratio, j{\varphi } , the radius ratio of the cavity, R, the normalized porosity, e{\varepsilon } , and parameter a defining double-diffusive convection (a = 0) or Soret induced convection (a = 1). For convection in a thin annular layer (R → 1), analytical solutions for the stream function, temperature and concentration fields are obtained using a concentric flow approximation and an integral form of the energy equation. The critical Rayleigh number for the onset of supercritical convection is predicted explicitly by the present model. Also, results are obtained from the analytical model for finite amplitude convection for which the flow and heat and mass transfer are presented in terms of the governing parameters of the problem. Numerical solutions of the full governing equations are obtained for a wide range of the governing parameters. A good agreement is observed between the analytical model and the numerical simulations.  相似文献   

18.
李丹  尚帅旗  陶俊林  王宁 《实验力学》2013,28(4):481-489
利用平台巴西圆盘加载方式和钢质压条加载方式,对两种厚度为25mm和50mm、不同密度的轻质泡沫混凝土(400~1000kg/m3)进行巴西圆盘劈裂试验,研究密度和厚度对泡沫混凝土裂纹宽度、劈裂强度、断裂韧度、断裂能的影响规律。结果表明,在橡胶垫平台巴西圆盘和钢质压条加载方式下,其劈裂断裂特征大致分为四个阶段:线性弹性段、非线性弹性段、起裂阶段、失稳阶段。同样加载率下最大裂纹宽度随着泡沫混凝土密度增加逐渐减小,劈裂拉伸强度、断裂韧度、断裂能呈幂函数形式增加。借鉴Reinhardt非线性软化曲线,对不同密度泡沫混凝土的应力软化关系进行曲线拟合,建立基于拉伸强度、断裂韧度等控制参数的应力-裂纹宽度关系三段式模型。基于试验结果,对理想多孔材料细观力学预测模型进行修正,获得泡沫混凝土孔隙率与拉伸强度的半经验公式。  相似文献   

19.
New measurements of the pressure distribution generated by two Newtonian liquids in the Truncated Cone-and-Plate Apparatus are presented, in order to evaluate the exact form of the inertial contribution for a range of Reynolds numbers (Re) fromRe = 140 toRe = 36,000;Re = R 2 /, where and are the liquid density and viscosity respectively,R is the plate radius, and is the angular velocity of the cone. The Walters equation for lowRe, p w = 0.15 2 (r2 – R2), is shown to be in excellent agreement with the measurements up toRe = 1000, provided an appropriate correction for the Newtonian hole pressure is made. Up toRe = 1000, the measured slope is within 1% of the theoretical value of 0.15 given by the Walters equation; as the Reynolds number increases above 1000, the data become increasingly nonlinear inr 2. Other theoretical predictions made especially for largeRe begin to disagree with the data even belowRe = 1000. The application of the experimentally determined additive inertial contribution to measurements of pressure distribution in four dilute polymer solutions is found to reproduce adequately the expected form of the viscoelastic pressure distribution, even at highRe where the Walters equation is not valid. Measurements of a combination of normal-stress differencesN 1 + 2N 2 for polymer solutions involving specific polymer/solvent interaction sites show a difference of 45% with change of solvent, while no difference is observed in solutions of polymers without the interaction sites. The normal-stress ratio —N 2/N 1 for a 5% solution of cis-polybutadiene is 0.24 at a shear rate of 100 s–1, and it appears to approach the zero shear limit of 2/7 given by the Doi-Edwards theory. The Higashitani-Pritchard-Baird-Lodge equation relating the elastic hole pressure to the normal-stress differenceN 1N 2 gives a qualitative agreement betweenN 1N 2 from the TCP Apparatus and the hole pressure from the Stressmeter; the percent difference is 0 at shear stress < 25 Pa, 35% at = 45 Pa, and 18% at the highest = 63 Pa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号