首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
N,N,N',N'-tetraoctyl diglycolamide abbreviated as TODGA, is one of the most promising extractant for actinide partitioning from high level nuclear waste. It forms reverse micelles in non polar solvents on equilibration with aqueous HNO(3) solutions. This reverse micellar system undergoes phase separation into dilute and concentrated reverse micellar solutions at high aqueous acid concentration. Small angle neutron scattering (SANS) studies reported in the literature explained this phenomenon based on gas-liquid type phase transition in the framework of Baxter adhesive hard sphere theory in the presence of a strong inter-micellar attractive interaction. The present investigation attempts to throw further light on this system by carrying out systematic dynamic light scattering (DLS) and viscometry studies, and their modeling on the TODGA reverse micellar solutions in the dodecane medium. The variation of the diffusion coefficient with the micellar volume fraction observed from the DLS studies is suggestive of the presence of an attractive interaction between the TODGA reverse micelles, which weakens at the high micellar volume fraction due to the increased dominance of the excluded volume effect. It is suggested that this weakened interaction is responsible for the absence of phase separation in this system at high TODGA concentration. The results thus highlight the importance of the presence of an attractive interaction between the TODGA micelles in determining the observed phase separation in the TODGA reverse micellar systems. The modeling of the DLS and viscosity data, however, suggest that the characteristic stickiness parameter of this system could be smaller than the critical value required for inducing a gas-liquid type phase transition.  相似文献   

2.
The structure of micelles formed by a four component water-in-oil nonionic microemulsion surfactant polyoxyethene (20) sorbitan monoleate (Tween 80), sorbitan monolaurate (Span 20) at ethyl oleate and deuterated water interface have been probed by small-angle neutron scattering (SANS). The total surfactant concentration in each of the samples studied (Tween 80: Span 20) is fixed at 3:2. The deuterated water content is variable at 5–60% w/w. The experimental SANS data from all the seven samples are fit well by spherical micelles interacting with hard sphere potential. Increased deuterated water leads to spherical to lamellar and rod-like micelle geometry featured in the SANS scattering data. The observed change in micelle geometry supports the characterization of phase transition between the self-assembled micelles of the nonionic microemulsion.   相似文献   

3.
The present work addresses the question of the range and amplitude of bridging attraction that is induced between surfactant micelles functionalized with complexing groups in the presence of coordination centers. An alkylethoxylated ester phosphate (AEP) is synthesized from a non‐ionic surfactant and anchored into DTAB micelles. In the absence of any coordination center, functionalized micelles repel each other. Phase behavior, dynamic light scattering and small angle neutrons scattering (SANS) experiments show that this repulsive interaction is switched to attractive by the addition of coordination centers such as aluminum cations. The extent of the composition range of coexisting phase depends on the concentration of coordination center and on the pH. Analysis of the structure factor obtained from SANS shows that the range of attraction is determined by the molecular dimension of the chelating surfactant, while the depth can be tuned with the concentration of coordination center and the pH. The strong influence of the pH is interpreted as arising from the condensation of aluminium cations that lead to high functional polynuclear complexes.  相似文献   

4.
We investigated the phase behavior and the microscopic structure of the colloidal complexes constituted from neutral/polyelectrolyte diblock copolymers and oppositely charged surfactant by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The neutral block is poly(N-isopropylacrylamide) (PNIPAM), and the polyelectrolyte block is negatively charged poly(acrylic acid) (PAA). In aqueous solution with neutral pH, PAA behaves as a weak polyelectrolyte, whereas PNIPAM is neutral and in good-solvent condition at ambient temperature, but in poor-solvent condition above approximately 32 degrees C. This block copolymer, PNIPAM-b-PAA with a narrow polydispersity, is studied in aqueous solution with an anionic surfactant, dodecyltrimethylammonium bromide (DTAB). For a low surfactant-to-polymer charge ratio Z lower than the critical value ZC, the colloidal complexes are single DTAB micelles dressed by a few PNIPAM-b-PAA. Above ZC, the colloidal complexes form a core-shell microstructure. The core of the complex consists of densely packed DTA+ micelles, most likely connected between them by PAA blocks. The intermicellar distance of the DTA+ micelles is approximately 39 A, which is independent of the charge ratio Z as well as the temperature. The corona of the complex is constituted from the thermosensitive PNIPAM. At lower temperature the macroscopic phase separation is hindered by the swollen PNIPAM chains. Above the critical temperature TC, the PNIPAM corona collapses leading to hydrophobic aggregates of the colloidal complexes.  相似文献   

5.
The growth behavior of aggregates formed in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) in the presence of the cationic hydrophobic salts o-toluidine hydrochloride (OTHC) and m-toluidine hydrochloride (MTHC) has been studied by dynamic light scattering (DLS) and small-angle neutron scattering (SANS) techniques. DLS studies indicate a progressive growth of SDS micelles with addition of less than equimolar concentrations of hydrophobic salts. A prolate ellipsoidal model is used to analyze the DLS data, which is further supported by SANS measurements. We explain the propensity for the strong growth of micelles in the presence of OTHC and MTHC by the high charge neutralization provided by these salts as the aromatic counterions are adsorbed on the surface of the micelles. When the substitution is at the meta position, i.e., for MTHC, micellar growth is favored at lower salt concentrations than for OTHC. The variation in growth behavior is explained in terms of the difference in the chemical environments of the substituents at the ortho and meta positions. Micellar parameters obtained from SANS data at elevated temperature also support enhanced growth of micelles in the presence of MTHC as compared to OTHC.  相似文献   

6.
A pyrene end-labeled double hydrophilic diblock copolymer, poly(2-(diethylamino)ethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate) (Py-PDEA-b-PDMA), was synthesized by sequential monomer addition via oxyanionic polymerization using a 1-pyrenemethanol-based initiator. This diblock copolymer exhibits reversible pH-responsive micellization behavior in aqueous solution, forming PDEA-core micelles stabilized by the soluble PDMA block at neutral or alkaline pH. Taking advantage of the pyrene probe covalently attached to the end of the PDEA block, the pH-induced micellization kinetics of Py-PDEA-b-PDMA was monitored by stopped-flow light scattering using a fluorescence detector. Upon a pH jump from 4.0 to 9.0, both the scattered light intensity and excimer/monomer fluorescence intensity ratios (IE/IM) increase abruptly initially, followed by a more gradual increase to reach plateau values. Interestingly, the IE/IM ratio increases abruptly within the first 10 ms: a triple exponential function is needed to fit the corresponding dynamic trace, leading to three characteristic relaxation time constants (tau(1,fluo) < tau(2,fluo) < tau(3,fluo)). On the other hand, dynamic traces for the scattered light intensity can be well-fitted by double exponential functions: the resulting time constants tau(1,scat) and tau(2,scat) can be ascribed to formation of the quasi-equilibrium micelles and relaxation into their final equilibrium state, respectively. Most importantly, tau(1,scat) obtained from stopped-flow light scattering is in general agreement with tau(2,fluo) obtained from stopped-flow fluorescence. The fastest process (tau(1,fluo) approximately 4 ms) detected by stopped-flow fluorescence is ascribed to the burst formation of small transient micelles comprising only a few chains, which are too small to be detected by conventional light scattering. These nascent micelles undergo rapid fusion and grow into quasi-equilibrium micelles and then slowly approach their final equilibrium state. The latter two processes can be detected by both techniques.  相似文献   

7.
Formation and structure of micelles from two amphiphilic polystyrene-block-poly(ethylene oxide) (PS-PEO) diblock copolymers (PS mol.wt. 1000; PEO mol.wt. 3000 and 5000) were examined by surface tension, viscosity, steady state fluorescence, dynamic light scattering (DLS), small angle neutron scattering (SANS), and cryo-transmission electron microscopy (cryo-TEM). The critical micelle concentration (CMC) of the copolymers in aqueous solution was ca. 0.05%; micelle hydrodynamic diameter was 30–35 nm with a narrow size distribution. SANS studies show that the copolymers form ellipsoidal micelles with semi major axis ~23 nm and semi minor axis ~8 nm. No significant change in the structure was found with temperature and presence of salt. The copolymer micelles interaction with the ionic surfactants sodium dodecyl sulphate (SDS) and dodecyltrimethylammonium bromide (DTAB) was also examined by DLS and SANS.  相似文献   

8.
Small-angle neutron scattering (SANS) and turbidity measurements have been carried out on the nonionic surfactants Tween 20 and Tween 80, in the presence of diethyleneglycol (DEG), triethyleneglycol (TEG), ethylene glycol monoethyl ether (EGMEE), and ethyleneglycol mono butyl ether (EGMBE). SANS measurements show that the shapes of the Tween 20 and Tween 80 micelles are oblate ellipsoidal, which do not change predominantly in the presence of DEG and TEG. However, the presence of EGMBE and EGMEE reduces the aggregation number of Tween. This has been attributed to the solubilization of EGMBE and EGMEE in the Tween micelles, providing them with additional hydrophobicity.  相似文献   

9.
We report on the influence of shear on a nonionic lamellar phase of tetraethyleneglycol monododecyl ether (C12E4) in D2O containing clay particles (Laponite RD). The system was studied by means of small-angle light scattering (SALS) and small-angle neutron scattering (SANS) under shear. The SANS experiments were conducted using a H2O/D2O mixture of the respective scattering length density to selectively match the clay scattering. The rheological properties show the familiar shear thickening regime associated with the formation of multilamellar vesicles (MLVs) and a shear thinning regime at higher stresses. The variation of viscosity is less pronounced as commonly observed. In the shear thinning regime, depolarized SALS reveals an unexpectedly strong variation of the MLV size. SANS experiments using the samples with lamellar contrast reveal a change in interlamellar spacing of up to 30% at stresses that lead to MLV formation. This change is much more pronounced than the change observed, when shear suppresses thermal bilayer undulations. Microphase separation occurs, and as a consequence, the lamellar spacing decreases drastically. The coincidence of the change in lamellar spacing and the onset of MLV formation is a strong indication for a morphology-driven microphase separation.  相似文献   

10.
光散射法研究氧化胺胶束与聚苯乙烯磺酸钠的相互作用   总被引:1,自引:0,他引:1  
采用光散射法研究了十二烷基二甲基氧化胺(DDAO)胶束与聚苯乙烯磺酸钠(NaPSS)的相互作用,浊度滴定和激光光散射结果表明,DDAO胶束与NaPSS的相互作用受介质离子强度影响,但与胶束浓度无关,浊度滴定曲线出现一个转折点(βc),而平均流体力学半径Rh对胶束离解度β的关系曲线出现2个转折点,在第一个转折点(β1)时,胶束与NaPSS开始缔合,在第二个转折点(β2)时,胶束与NaPSS的缔合达到饱和,β2相当于浊度滴定曲线的转折βc2,和β1不随离子强度而变化,采用β1和βc分别计算胶束与NaPSS发生缔合时的临界表面电荷密度,两者差距约为15%,电泳光散射也证实了β1的存在.  相似文献   

11.
The association between a highly branched polyelectrolyte with ionizable groups, polyethylene imine (PEI), and an anionic surfactant, sodium dodecyl sulfate (SDS), has been investigated at two pH values, using small-angle neutron and light scattering. The scattering data allow us to obtain a detailed picture of the association structures formed. Small-angle neutron scattering (SANS) measurements in solutions containing highly charged PEI at low pH and low SDS concentrations indicate the presence of disklike aggregates. The aggregates change to a more complex three-dimensional structure with increasing surfactant concentration. One pronounced feature in the scattering curves is the presence of a Bragg-like peak at high q-values observed at a surfactant concentration of 4.2 mM and above. This scattering feature is attributed to the formation of a common well-ordered PEI/SDS structure, in analogue to what has been reported for other polyelectrolyte-surfactant systems. Precipitation occurred at the charge neutralization point, and X-ray diffraction measurements on the precipitate confirmed the existence of an ordered structure within the PEI/SDS aggregates, which was identified as a lamellar internal organization. Polyethylene imine has a low charge density in alkaline solutions. At pH 10.1 and under conditions where the surfactant was contrast matched, the SANS scattering curves showed only small changes with increasing surfactant concentration. This suggests that the polymer acts as a template onto which the surfactant molecules aggregate. Data from both static light scattering and SANS recorded under conditions where SDS and to a lower degree PEI contribute to the scattering were found to be consistent with a structure of stacked elliptic bilayers. These structures increased in size and became more compact as the surfactant concentration was increased up to the charge neutralization point.  相似文献   

12.
The size-dependent interaction of anionic silica nanoparticles with ionic (anionic and cationic) and nonionic surfactants has been studied using small-angle neutron scattering (SANS). The surfactants used are anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB), and nonionic decaoxyethylene n-dodecylether (C(12)E(10)). The measurements have been carried out for three different sizes of silica nanoparticles (8, 16, and 26 nm) at fixed concentrations (1 wt % each) of nanoparticles and surfactants. It is found that irrespective of the size of the nanoparticles there is no significant interaction evolved between like-charged nanoparticles and the SDS micelles leading to any structural changes. However, the strong attraction of oppositely charged DTAB micelles with silica nanoparticles results in the aggregation of nanoparticles. The number of micelles mediating the nanoparticle aggregation increases with the size of the nanoparticle. The aggregates are characterized by fractal structure where the fractal dimension is found to be constant (D ≈ 2.3) independent of the size of the nanoparticles and consistent with diffusion-limited-aggregation-type fractal morphology in these systems. In the case of nonionic surfactant C(12)E(10), micelles interact with the individual silica nanoparticles. The number of adsorbed micelles per nanoparticle increases drastically whereas the percentage of adsorbed micelles on nanoparticles decreases with the increase in the size of the nanoparticles.  相似文献   

13.
Hollow polymer spheres synthesized from a vesicle-directed polymerization can be dried and redispersed in water using a variety of nonionic ethoxylated alcohol surfactants as stabilizers. The final dispersions consist of both polymer shells and surfactant micelles, which remain together in colloidal suspension for at least several months. Small-angle neutron scattering (SANS) is used to measure the polymer shell thickness (63 A) and core radius (560 A) of the surfactant-stabilized hollow polymer spheres in the presence of surfactant micelles. Characterization by SANS provides information about the surfactant bilayer and polymer shell thicknesses which were previously unattainable.  相似文献   

14.
Aqueous solutions of a nonionic surfactant (either Tween20 or BrijL23) and an anionic surfactant (sodium dodecyl sulfate, SDS) are investigated, using small-angle neutron scattering (SANS). SANS spectra are analysed by using a core-shell model to describe the form factor of self-assembled surfactant micelles; the intermicellar interactions are modelled by using a hard-sphere Percus–Yevick (HS-PY) or a rescaled mean spherical approximation (RMSA) structure factor. Choosing these specific nonionic surfactants allows for comparison of the effect of branched (Tween20) and linear (BrijL23) surfactant headgroups, both constituted of poly-ethylene oxide (PEO) groups. The nonionic–anionic surfactant mixtures are studied at various concentrations up to highly concentrated samples (ϕ ≲ 0.45) and various mixing ratios, from pure nonionic to pure anionic surfactant solutions. The scattering data reveal the formation of mixed micelles already at concentrations below the critical micelle concentration of SDS. At higher volume fractions, excluded volume effects dominate the intermicellar structuring, even for charged micelles. In consequence, at high volume fractions, the intermicellar structuring is the same for charged and uncharged micelles. At all mixing ratios, almost spherical mixed micelles form. This offers the opportunity to create a system of colloidal particles with a variable surface charge. This excludes only roughly equimolar mixing ratios (X≈ 0.4–0.6) at which the micelles significantly increase in size and ellipticity due to specific sulfate–EO interactions.  相似文献   

15.
The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.  相似文献   

16.
The structures of the mixed anionic/nonionic surfactant micelles of SDS/C12E6 and SDS/C12E8 have been measured by small angle neutron scattering (SANS). The variations in the micelle aggregation number and surface charge with composition, measured in D2O and in dilute electrolyte, 0.01 and 0.05 M NaCl, provide data on the relative roles of the surfactant headgroup steric and electrostatic interactions and their contributions to the free energy of micellization. For the SDS/C12E8 mixture, solutions increasingly rich in C12E8 show a modest micellar growth and an increase in the surface charge. The changes with increasing electrolyte concentration are similarly modest. In contrast, for the SDS/C12E6 mixture, solutions rich in C12E6 show a more significant increase in aggregation number. Furthermore, electrolyte has a more substantial effect on the aggregation for the nonionic (C12E6) rich mixtures. The experimental results are discussed in the context of estimates of the steric and electrostatic contributions to the free energy of micellization, calculated from the molecular thermodynamic approach. The variation in micelle surface charge is discussed in the context of the "dressed micelle" theory for micelle ionization, and other related data.  相似文献   

17.
Electron paramagnetic resonance, viscosity, and small-angle neutron scattering (SANS) measurements have been used to study the interaction of mixed anionic/nonionic surfactant micelles with the polyampholytic protein gelatin. Sodium dodecyl sulfate (SDS) and the nonionic surfactant dodecylmalono-bis-N-methylglucamide (C12BNMG) were chosen as "interacting" and "noninteracting" surfactants, respectively; SDS micelles bind strongly to gelatin but C12BNMG micelles do not. Further, the two surfactants interact synergistically in the absence of the gelatin. The effects of total surfactant concentration and surfactant mole fraction have been investigated. Previous work (Griffiths et al. Langmuir 2000, 16 (26), 9983-9990) has shown that above a critical solution mole fraction, mixed micelles bind to gelatin. This critical mole fraction corresponds to a micelle surface that has no displaceable water (Griffiths et al. J. Phys. Chem. B 2001, 105 (31), 7465). On binding of the mixed micelle, the bulk solution viscosity increases, with the viscosity-surfactant concentration behavior being strongly dependent on the solution surfactant mole fraction. The viscosity at a stoichiometry of approximately one micelle per gelatin molecule observed in SDS-rich mixtures scales with the surface area of the micelle occupied by the interacting surfactant, SDS. Below the critical solution mole fraction, there is no significant increase in viscosity with increasing surfactant concentration. Further, the SANS behavior of the gelatin/mixed surfactant systems below the critical micelle mole fraction can be described as a simple summation of those arising from the separate gelatin and binary mixed surfactant micelles. By contrast, for systems above the critical micelle mole fraction, the SANS data cannot be described by such a simple approach. No signature from any unperturbed gelatin could be detected in the gelatin/mixed surfactant system. The gelatin scattering is very similar in form to the surfactant scattering, confirming the widely accepted picture that the polymer "wraps" around the micelle surface. The gelatin scattering in the presence of deuterated surfactants is insensitive to the micelle composition provided the composition is above the critical value, suggesting that the viscosity enhancement observed arises from the number and strength of the micelle-polymer contact points rather than the gelatin conformation per se.  相似文献   

18.
The ternary catanionic system octylammoniumoctanoate/octane/water is studied by combined SANS, light scattering, conductivity, and phase diagram approach in the water-poor microemulsion region. The sphere-to-cylinder growth and branching depends on the concentration, the water-to-surfactant ratio, and the temperature. The unidimensional growth leads to a network of interconnected wormlike micelles. Like most studied linear nonionic surfactants, in this true catanionic system at equimolarity of anionic and cationic surfactant, the curvature toward water increases with temperature, making connections between cylinders less frequent.  相似文献   

19.
Interaction between binary surfactant mixtures containing anionic surfactants viz. sodium dodecyl sulphates (NaDS) and magnesium dodecyl sulphates (Mg(DS)2) and a nonionic surfactants viz. dodecyl dodecapolyethylene glycol ether (C12E12) and dodecyl pentadecapolyethylene glycol ether (C12E15) in water at different mole fractions (0–1) were studied by surface tension, viscometry and dynamic light scattering (DLS) methods. The composition of mixed micelles and the interaction parameter, β evaluated from the CMC data obtained by surface tension for different systems using Rubingh's theory were discussed. Activity coefficient (f1 and f2) of metal dodecyl sulphates (MDS)/C12Em (m = 12, 15) mixed surfactant systems were evaluated, which shows extent of ideality of individual surfactant in mixed system. The estimated interaction parameter indicates an overall attractive interaction in the mixed micelles, which is predominant for NaDS as compared to Mg(DS)2. Counter ion valency has specific effect on the mixed micelles, as Mg(DS)2 has less interaction with nonionic surfactants in comparison to NaDS due to strong condensation of counter ion. The stability factors for mixed micelles were also discussed by Maeda's approach, which was justified on the basis of steric factor due to difference in head group of nonionic surfactant. DLS measurements and viscosity data reveals the synergism in mixed micelles, showing typical viscosity trends and linearity in sizes were observed.  相似文献   

20.
The influence of liquid and supercritical carbon dioxide and liquid propane on the structural properties of both ionic and nonionic surfactant-based liquid crystal films is discussed in this paper. Swelling of the films, measured using in situ small-angle neutron scattering (SANS), was found to be dependent on the solubility of the propane/carbon dioxide in the micelles of the respective liquid crystals. Additionally, under certain pressure conditions the structural properties of some of the films were observed to change, ultimately leading to a loss of order in the micellar arrays of the liquid crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号