首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In the analysis of biological samples with sub ng/g uranium concentrations, pre-concentration has been shown to improve the detection limit for the determination of uranium. Recovery corrected kinetic phosphorescence analysis (KPA) combines pre-concentration and separation of uranium by anion-exchange from human tissues dissolved in 6M HCl, with the radiochemical yield determined by alpha-spectrometry, using 232U as a tracer. Total uranium is determined by KPA after correction for chemical recovery. Twenty-one randomly selected dissolved tissue samples from the United States Transuranium and Uranium Registries (USTUR) Case 0242 were chosen for comparative analyses. The set of samples included dissolved bone and soft tissues. Uranium concentrations for seven of the samples had not been previously reported. Direct KPA could not be used to determine uranium concentrations of five unreported tissues. Three of these tissues had uranium concentrations at or below the KPA LQ value of 0.028 ng/ml and two tissues had known matrix interferences. All seven of the unreported tissues were successfully analyzed by recovery corrected KPA; concentrations ranged from 9 to 1380 ng per tissue, including those that could not be analyzed by direct KPA due to matrix problems. Recovery corrected KPA gives results similar to direct KPA where matrix interferences and low detection limits are not encountered. A comparison of the direct method of KPA versus recovery corrected KPA shows marked improvement for the determination of uranium in samples that heretofore either uranium was not detected or the sample had to be drastically diluted to minimize matrix effects in order to measure uranium.  相似文献   

2.
Precise determination of uranium concentration in human urine is quite important in assessment of occupational and public exposure to uranium. In the present work, a pulsed dye nitrogen laser-induced kinetic phosphorescence analysis (KPA) was used to determine uranium in urine of Iraqi phosphate mine and fertilizer plant workers and in the population living near the mining region. A total of 92 urine samples were collected from workers of the Akashat phosphate mine, the Al-Qaim fertilizer complex, and the Akashat residential region. Uranium concentration in urine of all samples ranged between 0.49 to 5.26 μg L?1 with a total average of 1.47 ± 0.01 μg L?1. For comparison, all samples were also analyzed using a completely different technique; the nuclear fission track analysis using CR-39 SSNTD. Both techniques were capable of such measurements, although not with an equal degree of uncertainty. KPA technique is found to be more suitable for analysis of urine samples having high concentrations of uranium.  相似文献   

3.
Two typical methods used for the determination of uranium in human autopsy tissues are kinetic phosphorescence analysis (KPA) and alpha-spectrometry, both of which have significant limitations and advantages. KPA is limited because of the amount of sample used (1–10 ml for sample digestion followed by one ml KPA aliquots), no isotopic information is provided, phosphorescence degradation by salts in solution, and even more importantly, it does not provide chemical recovery information. For samples with sub ng uranium concentrations per g of inorganic material, preconcentration is necessary, which may require chemical recovery (other than simple evaporation). While alpha-spectrometry has very good radiometric detection limits for 238U, the very long half-life of 238U (4.468·109 y) restricts its mass detection limit (27 ng). KPA, on the other hand, has a detection limit three orders of magnitude lower (0.02 ng) for natural uranium. A recovery corrected method for the determination of natural uranium in human tissues was developed combining preconcentration of human tissues dissolved in 6M HCl by anion exchange with alpha-spectrometry and kinetic phosphorescence analysis, utilizing 232U as a tracer. Solution aliquots containing up to 6 g of bone ash were pre-concentrated for KPA measurement thereby allowing the use of up to 25% of the original sample solution weight for analysis by KPA. The radiochemical yield of 232U was determined by alpha-spectrometry and the uranium content was determined by KPA. The mean radiochemical yields obtained for human tissue samples range from 65% to 106% with a mean of 85%±8%.  相似文献   

4.
A study regarding uranium determination in seawater by total reflection X-ray fluorescence (TXRF) spectrometry is reported. Uranium, present in seawater in concentration of about 3.3 ng/mL, was selectively extracted in diethyl ether and determined by TXRF after its preconcentration by evaporation and subsequent dissolution in a small volume of 1.5% suprapure HNO3. Yttrium was used as an internal standard. Before using diethyl ether for selective extraction of uranium from seawater, its extraction behavior for different elements was studied using a multielement standard solution having elemental concentrations in 5 ng/mL levels. It was observed that the extraction efficiency of diethyl ether for uranium was about 100% whereas for other elements it was negligible. The detection limit of TXRF method for uranium in seawater samples after pre-concentration step approaches to 67 pg/mL. The concentrations of uranium in seawater samples determined by TXRF are in good agreement with the values reported in the literature. The method shows a precision within 5% (1σ). The study reveals that TXRF can be used as a fast analytical technique for the determination of uranium in seawater.  相似文献   

5.
A procedure for the determination of a selective androgen receptor modulator andarine (S-4) and a nonpeptide growth hormone secretagogue ibutamoren (MK-677) in urine has been developed including sample preparation by the “dilute-and-shoot” procedure, separation of analytes by ultra-high performance liquid chromatography in the gradient elution mode, and mass-spectrometric detection with heated electrospray ionization. The limits of detection are in the range of 0.5–2.5 ng/mL, the calibration curves are linear in the range of 2.5–250 ng/mL for andarine and 5–250 ng/mL for ibutamoren. The proposed procedure was used for the analysis of urine samples obtained from volunteers after a single administration of these drugs containing 15 mg of active substances.  相似文献   

6.
This study was conducted to test the ability of the Chemchek? Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.  相似文献   

7.
A procedure is proposed for determining Meldonium in human urine, including sample preparation to analysis and analyte determination by HPLC with tandem mass spectrometric detection. For sample preparation, the procedure of “dilute-and-shoot” was used. The lower limit of the analytical range is 10 ng/mL; the limit of detection is 7.5 ng/mL; and the linearity range is 10–250 ng/mL. The proposed procedure is tested on real samples obtained from volunteers. A possibility of the direct analysis of urine samples after dilution is demonstrated; the limit of detection is 20 ng/mL. The high sensitivity of the procedure ensures its use for the determination of Meldonium in clinical diagnosis and doping control.  相似文献   

8.
Quinapril is an antihypertensive drug that belongs to the family of angiotensin-converting enzyme inhibitors. It is metabolized to quinaprilat, which is the compound that is really responsible for the therapeutic action. In this study, a rapid and simple liquid chromatographic method with photometric detection is described and applied to the determination of quinapril and quinaprilat in urine. The cleanup procedure for the urine samples consists of a solid-liquid extraction using C8 cartridges. Under these conditions, both compounds and the internal standard (enalapril maleate) are separated in less than 9 min. Recoveries for quinapril and quinaprilat are greater than 80%. The method is sensitive enough (detection limit of 60 ng/mL for quinapril and 50 ng/mL for quinaprilat) to be applied for the determination of quinapril and quinaprilat in urine samples obtained from four hypertensive patients after the intake of a therapeutic dose.  相似文献   

9.
Solid-phase extraction (SPE) was coupled to ion-trap mass spectrometry to determine clenbuterol in urine. For SPE a cartridge exchanger was used and, after extraction, the eluate was directly introduced into the mass spectrometer. For two types of cartridges, i.e. C18 and polydivinylbenzene (PDVB), the total SPE procedure (including injection of 1 mL urine, washing, and desorption) has been optimised. The total analysis, including SPE, elution, and detection, took 8.5 min with PDVB cartridges, while an analysis time of 11.5 min was obtained with C18 cartridges. A considerable amount of matrix was present after extraction of urine over C18 cartridges, resulting in significant ion suppression. With PDVB cartridges, the matrix was less prominent, and less ion suppression was observed. For single MS, a detection limit (LOD) of about 25 ng/mL was found with PDVB cartridges. With C18 cartridges an LOD of only about 50 ng/mL could be obtained. Applying tandem mass spectrometry (MS/MS) did not lead to an improved LOD due to an interfering compound. However, a considerable improvement in the LOD was obtained with MS3. The selectivity and sensitivity were increased by the combination of efficient fragmentation of clenbuterol and reduction of the noise. Detection limits of 2 and 0.5 ng/mL were obtained with C18 and PDVB cartridges, respectively. The ion suppression was 4 to 45% (concentration range: 250 to 1.0 ng/mL) after extraction of urine using PDVB cartridges, and up to 70% ion suppression was observed using C18 cartridges. With MS4, no further improvement in selectivity and sensitivity was achieved, due to inefficient fragmentation of clenbuterol and no further reduction of noise.  相似文献   

10.
A rapid and sensitive automated coupled-column liquid chromatography/electrospray tandem mass spectrometry (LC/LC/ES-MS/MS) method has been developed for the quantitation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) in both human serum and urine. Human serum was first protein precipitated with acetonitrile, while urine was directly injected into the coupled-column system. A 10 microL aliquot was then analyzed using as first separation column a Discovery C18 5 microm 50 x 2.1 mm; the fraction containing the analyte was transferred on-line to the second column consisting of a ABZ+ 5 microm 100 x 2.1 mm, which was connected to the electrospray source (Z-spray) of a Quattro LC triple-quadrupole instrument. Chlorpyrifos was detected in positive ion mode using four multi reaction monitoring (MRM) transitions while TCP was measured in negative ion mode using three pseudo-MRM transitions. The clean-up performed by the coupled-column approach avoids the use of an internal standard for the correct quantitation of both analytes, and the highly automated procedure renders a sample throughput of more than 100 samples per day. Both compounds can be determined using the same set-up, the only difference in the procedure being the composition of the first mobile phase. The method has proved to be fast, reliable and sensitive, yielding calibration curves for both analytes with correlation coefficients greater than 0.9995. The repeatability and reproducibility at 5 and 50 ng/mL was lower than 8%. The accuracy and precision were evaluated by means of recovery experiments from fortified serum (5-50 ng/mL) and urine (1-10 ng/mL) samples, obtaining satisfactory recoveries for both compounds (87-113% in serum, and 98-109% in urine), with coefficients of variation (CVs) less than 10%. The detection limits were similar for chlorpyrifos and metabolite: 1.5 ng/mL in serum, and 0.5 ng/mL in urine, where no sample handling took place. The validated procedures provide excellent tools for the specific assessment of occupational exposure to the organophosphorus pesticide chlorpyrifos, throughout the analysis of both human serum and urine, and it is more selective and sensitive than the current assay based on the measurement of the decrease in the cholinesterase activity.  相似文献   

11.
A simple and reliable method has been developed for the determination of uranium(VI). The method is based on the separation and preconcentration of uranium(VI) using a column packed with 8-hydroxyquinoline immobilized on surfactant coated alumina prior to its spectrophotometric determination with arsenazo III. The effect of pH, sample flow rate and volume, elution conditions, and foreign ions on the sorption of uranium(VI) has been investigated. A preconcentration factor of 200 was achieved by passing 1000 mL of sample through the column. The relative standard deviation for 10 replicate analyses at the 100 ng/mL level of uranium(VI) was 2.1% and the detection limit was 0.12 ng/mL. The method was success-fully applied to the determination of uranium in natural water samples. The accuracy was assessed through recovery experiments and the analysis of a certified reference material.  相似文献   

12.
A simple and reliable method has been developed for the determination of uranium(VI). The method is based on the separation and preconcentration of uranium(VI) using a column packed with 8-hydroxyquinoline immobilized on surfactant coated alumina prior to its spectrophotometry determination with Arsenazo III. The effect of pH, sample flow rate and volume, elution conditions, and foreign ions on the sorption of uranium(VI) has been investigated. A preconcentration factor of 200 was achieved by passing 1000 mL of sample through the column. The relative standard deviation for 10 replicate analyses at the 100 ng/mL level of uranium(VI) was 2.1% and the detection limit was 0.12 ng/mL. The method was successfully applied to the determination of uranium in natural water samples. The accuracy was assessed through recovery experiments and the analysis of a certified reference material.  相似文献   

13.
A new screening procedure for 18 narcotics in urine for anti-doping purposes has been developed using liquid chromatography/triple quadrupole mass spectrometry (LC/MS). Electrospray ionization (ESI) was used as interface. Infusion experiments were performed for all substances to investigate their mass spectrometric behaviour in terms of selecting product specific ions. These product ions were then used to develop a tandem mass spectrometric method using selected reaction monitoring (SRM). For the LC/MS analysis, chromatography was performed on an octadecylsilane column. The total run time of the chromatographic method was 5.5 min. For the sample preparation prior to LC/MS analysis, the urine samples were liquid-liquid extracted at pH 9.5 after overnight enzymatic hydrolysis. Two extraction solvents were evaluated: dichloromethane/methanol 9/1 (v/v), which is currently used for the extraction of narcotics, and diethyl ether, used for the extraction of steroids. With diethyl ether the detection limits for all compounds ranged between 0.5 and 20 ng/mL and with the mixture containing dichloromethane the detection limits ranged between 0.5 and 10 ng/mL. Taking into account the minimum required performance limits of the World Anti-Doping Agency of 200 ng/mL for narcotics, diethyl ether can also be considered as extraction solvent for narcotics. Finally, the described method was applied to the analysis of urine samples previously found to contain narcotics by our routine gas chromatography/mass spectrometry (GC/MS) method.  相似文献   

14.
A new, simple, precise and rapid high performance liquid chromatographic method was developed for the determination of meropenem in human serum, urine and pharmaceutical dosage forms. Chromatography was carried out on an LC(18) column using a mixture of 15 mM KH(2)PO(4):acetonitrile:methanol (84:12:4; v/v/v), adjusted to pH 2.8 with H(3)PO(4). The proposed method was conducted using a reversed-phase technique, UV monitoring at 307.6 nm and cefepime as an internal standard. The retention times were 5.98 and 7.47 min for cefepime and meropenem, respectively. The detector response was linear over the concentration range of 50-10,000 ng/mL. The detection limit of the procedure was found to be 22 ng/mL. The detection limit for meropenem in human plasma was 108.4 ng/mL and the corresponding value in human urine was 179.3 ng/mL. No interference from endogenous substances in human serum, urine and pharmaceutical preparation was observed. The proposed method is sufficiently sensitive for determination of the concentrations of meropenem and may have clinical application for its monitoring in patients receiving the drug.  相似文献   

15.
When cocaine is smoked, a pyrolytic product, methyl ecgonidine (anhydroecgonine methyl ester), is also consumed with the cocaine. The amount of methyl ecgonidine formed depends on the pyrolytic conditions and composition of the illicit cocaine. This procedure describes detection of cocaine and 10 metabolites--cocaethylene, nor-cocaine, nor-cocaethylene, methyl ecgonine, ethyl ecgonine, benzoylecgonine, nor-benzoylecgonine, m-hydroxybenzoylecgonine, p-hydroxybenzoylecgonine and ecgonine--in blood and urine. In addition, the detection of pyrolytic methyl ecgonidine and three metabolites--ecgonidine (anhydroecgonine), ethyl ecgonidine (anhydroecgonine ethyl ester) and nor-ecgonidine (nor-anhydroecgonine)--are included. The newly described metabolites, ethyl ecgonidine and nor-ecgonidine, were synthesized and characterized by gas chromatography-mass spectrometry (GC-MS). All 15 compounds were extracted from 3 mL of blood or urine by solid-phase extraction and identified by a GC-MS method. The overall recoveries were 49% for methyl ecgonine, 35% for ethyl ecgonine, 29% for ecgonine and more than 83% for all other drugs. The limits of detection were between 0.5 and 4.0 ng/mL except for ecgonine, which was 16 ng/mL. Linearity for each analyte was established and in all cases correlation coefficients were 0.9985-1.0000. The procedure was applied to examine the concentration profiles of analytes of interest in post-mortem (PM) blood and urine, and in urine collected from living individuals (LV). These specimens previously were shown to be positive for the cocaine metabolite, benzoylecgonine. Ecgonidine, the major metabolite of methyl ecgonidine, was present in 77% of PM and 88% of the LV specimens, indicating smoking as the major route of cocaine administration. The new pyrolytic metabolites, ethyl ecgonidine and nor-ecgonidine, were present in smaller amounts. The urine concentrations of nor-ecgonidine were 0-163 ng/mL in LV and 0-75 ng/mL in PM specimens. Ethyl ecgonidine was found only in PM urine at concentrations 0-39 ng/mL. Ethanol-related cocaine metabolites, ethyl ecgonine or cocaethylene, were present in 69% of PM and 53% of cocaine-positive LV specimens, implying alcohol consumption with cocaine use. The four major metabolites of cocaine--benzoylecgonine, ecgonine, nor-benzoylecgonine and methyl ecgonine--constituted approximately 88 and 97% of all metabolites in PM and LV specimens, respectively. The concentrations of nor-cocaine and nor-cocaethylene were consistently the lowest of all cocaine metabolites. At benzoylecgonine concentrations below 100 ng/mL, ecgonine was present at the highest concentrations. In 20 urine specimens, benzoylecgonine and ecgonine median concentrations (range) were 54 (0-47) and 418 ng/mL (95-684), respectively. Therefore, detection of ecgonine is advantageous when benzoylecgonine concentrations are below 100 ng/mL.  相似文献   

16.
An automated extraction and determination method for the gas chromatography (GC)-mass spectrometry (MS) analysis of amphetamine-related drugs in human urine is developed using headspace solid-phase microextraction (SPME) and in-matrix derivatization. A urine sample (0.5 mL, potassium carbonate (5 M, 1.0 mL), sodium chloride (0.5 g), and ethylchloroformate (20 microL) are put in a sample vial. Amphetamine-related drugs are converted to ethylformate derivatives (carbamates) in the vial because amphetamine-related drugs in urine are quickly reacted with ethylchloroformate. An SPME fiber is then exposed at 80 degrees C for 15 min in the headspace of the vial. The extracted derivatives to the fiber are desorbed by exposing the fiber in the injection port of a GC-MS. The calibration curves show linearity in the range of 1.0 to 1000 ng/mL for methamphetamine, fenfluramine, and methylenedioxymethamphetamine; 2.0 to 1000 ng/mL for amphetamine and phentermine; 5.0 to 1000 ng/mL for methylenedioxyamphetamine; 10 to 1000 ng/mL for phenethylamine; and 50 to 1000 ng/mL for 4-bromo-2,5-dimethoxyphenethylamine in urine. No interferences are found, and the time for analysis is 30 min for one sample. Furthermore, this proposed method is applied to some clinical and medico-legal cases by taking methamphetamine. Methamphetamine and its metabolite amphetamine are detected in the urine samples collected from the patients involved in the clinical cases. Methamphetamine, amphetamine, and phenethylamine are detected in the urine sample collected from the victim of a medico-legal case.  相似文献   

17.
A method for the extraction of clenbuterol from calf urine samples using a molecularly imprinted polymer (MIP) has been developed. The aim was that the final extracts from the MIP should allow quantitation of clenbuterol down to 0.5 ng/mL urine using HPLC with UV detection. The MIP was produced using brombuterol as a template and the selectivity of the MIP, for clenbuterol, was tested against a non-imprinted polymer (produced without template) and was found to be high. After loading of 5 mL diluted centrifuged urine, selective binding was established in acetonitrile-acetic acid (98:2). For further elution of interferences, 0.5 M ammonium acetate buffer pH 5 and 70% acetonitrile in water was used. Clenbuterol was eluted using 1% trifluoroacetic acid in methanol, which was evaporated and reconstituted in buffer. Results from the HPLC analyses showed that the extraction of clenbuterol using MIP is linear in the range 0.5-100 ng/mL with good precision (4.3% for 0.6 ng/mL and 2.1% for 6.0 ng/mL) and accuracy (96.7% for 0.6 ng/mL and 96.7% for 6.0 ng/mL). The recoveries were 75%. The results show that the method offers a selectivity and sensitivity that make the quantitation of 0.5 ng clenbuterol/mL urine by HPLC-UV possible and a competitive alternative to state-of-the-art routine analytical methods.  相似文献   

18.
A resonance light scattering (RLS) method for the direct detection of uranium (VI) or uranyl in aqueous solution without separation procedure has been reported in this paper. Sulfo-salophen, a water-soluble tetradentate Schiff base ligand of uranyl, reacted with uranyl to form a complex. The complex reacted further with oxalate to form supramolecular dimer with large molecular volume, resulting in a production of strong RLS signal. The amount of uranium (VI) was detected through measuring the RLS intensity. A linear range was found to be 0.2–30.0 ng/mL under optimal conditions with a detection limit of 0.15 ng/mL. The method has been applied to determine uranium (VI) in environmental water samples with the relative standard deviations of less than 5 % and the recoveries of 98.8–105.8 %. The present technique is suitable for the assay of uranium (VI) in environmental water samples collected from different sources.  相似文献   

19.
For analysis of uranium in urine determination of the isotope ratio and quantification were investigated by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS). The instrument used (ThermoFinniganMAT ELEMENT2) is a single-collector MS and, therefore, a stable sample-introduction system was chosen. The methodical set-up was optimized to achieve the best precision for both the isotope ratio and the total uranium concentration in the urine matrix.Three spiked urine samples from an European interlaboratory comparison were analyzed to determine the (235)U/(238)U isotope ratio. The ratio was found to be in the range 0.002116 to 0.007222, the latter being the natural uranium isotope ratio. The first ratio indicates the abundance of depleted uranium.The effect of storage conditions and the stability for the matrix urine were investigated by using "real-life" urine samples from unexposed persons in the Netherlands. For samples stored under refrigeration and acidified the results (range 0.8 to 5.3 ng L(-1) U) were in the normal fluctuation range whereas a decrease in uranium concentration was observed for samples stored at room temperature without acidification.  相似文献   

20.
A highly sensitive, rapid assay method has been developed and validated for the estimation of JI-101 in human plasma and urine using LC-MS/MS-ESI in the positive-ion mode. The assay procedure involves extraction of JI-101 and alfuzosin (internal standard, IS) from human plasma/urine with a solid-phase extraction process. Chromatographic resolution was achieved on two Zorbax SB-C(18) columns connected in series with a PEEK coupler using an isocratic mobile phase comprising acetonitrile-0.1% formic acid in water (70:30, v/v). The total run time was 2.0 min. The MS/MS ion transitions monitored were 466.20 → 265.10 for JI-101 and 390.40 → 156.10 for IS. The method was subjected to rigorous validation procedures to cover the following: selectivity, sensitivity, matrix effect, recovery, precision, accuracy, stability and dilution effect. In both matrices the lower limit of quantitation was 10.0 ng/mL and the linearity range extended from ~10.0 to 1508 ng/mL in plasma or urine. The intra- and inter-day precisions were in the ranges 1.57-14.5 and 6.02-12.4% in plasma and 0.97-15.7 and 8.66-10.2% in urine. This method has been successfully applied for the characterization of JI-101 pharmacokinetics in cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号