首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For any x ?? (0, 1], let the series \( {\sum}_{n=1}^{\infty }1/{d}_n(x) \) be the Sylvester expansion of x, where {d j (x),?j?≥?1} is a sequence of positive integers satisfying d1(x)?≥?2 and dj?+?1(x)?≥?d j (x)(d j (x)???1)?+?1 for j?≥?1. Suppose ? : ? → ?+ is a function satisfying ?(n+1) – ? (n) → ∞ as n → ∞. In this paper, we consider the set
$$ E\left(\phi \right)=\left\{x\kern0.5em \in \left(0,1\right]:\kern0.5em \underset{n\to \infty }{\lim}\frac{\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)}{\phi (n)}=1\right\} $$
and quantify the size of the set in the sense of Hausdorff dimension. As applications, for any β > 1 and γ > 0, we get the Hausdorff dimension of the set \( \left\{x\in \kern1em \left(0,1\right]:\kern0.5em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{n}^{\beta }=\upgamma \right\}, \) and for any τ > 1 and η > 0, we get a lower bound of the Hausdorff dimension of the set \( \left\{x\kern0.5em \in \kern0.5em \left(0,1\right]:\kern1em {\lim}_{n\to \infty}\left(\log {d}_n(x)-{\sum}_{j=1}^{n-1}\log {d}_j(x)\right)/{\tau}^n=\eta \right\}. \)  相似文献   

2.
Let f(z) be a finite order meromorphic function and let c∈C\{0} be a constant.If f(z)has a Borel exceptional value a∈C,it is proved that max{τ(f(z)),τ(△_cf(z))}=max{τ(f(z)),τ(f(z+c))}=max{τ(△_cf(z)),τ(f(z+c))}=σ(f(z)).If f(z) has a Borel exceptional value b∈(C\{0})∪{∞},it is proved that max{τ(f(z)),τ(△cf(z)/f(z))}=max{τ(△cf(z)/f(z)),τ(f(z+c))}=σ(f(z)) unless f(z) takes a special form.Here τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z),and σ(g(z)) denotes the order of growth of g(z).  相似文献   

3.
We investigate generalised Piterbarg constants
$$\mathcal{P}_{\alpha, \delta}^{h}=\lim\limits_{T \rightarrow \infty} \mathbb{E}\left\{ \sup\limits_{t\in \delta \mathbb{Z} \cap [0,T]} e^{\sqrt{2}B_{\alpha}(t)-|t|^{\alpha}- h(t)}\right\} $$
determined in terms of a fractional Brownian motion B α with Hurst index α/2∈(0,1], the non-negative constant δ and a continuous function h. We show that these constants, similarly to generalised Pickands constants, appear naturally in the tail asymptotic behaviour of supremum of Gaussian processes. Further, we derive several bounds for \(\mathcal {P}_{\alpha , \delta }^{h}\) and in special cases explicit formulas are obtained.
  相似文献   

4.
Let L be a Schrdinger operator of the form L =-? + V acting on L~2(R~n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R~n) denote the BMO space associated to the Schrdinger operator L on R~n. In this article, we show that for every f ∈ BMO_L(R~n) with compact support, then there exist g ∈ L~∞(R~n) and a finite Carleson measure μ such that f(x) = g(x) + S_(μ,P)(x) with ∥g∥∞ + |||μ|||c≤ C∥f∥BMO_L(R~n), where S_(μ,P)=∫(R_+~(n+1))Pt(x,y)dμ(y, t),and Pt(x, y) is the kernel of the Poisson semigroup {e-~(t(L)~(1/2))}t0 on L~2(R~n). Conversely, if μ is a Carleson measure, then S_(μ,P) belongs to the space BMO_L(R~n). This extends the result for the classical John-Nirenberg BMO space by Carleson(1976)(see also Garnett and Jones(1982), Uchiyama(1980) and Wilson(1988)) to the BMO setting associated to Schrdinger operators.  相似文献   

5.
We study the following integral type operator
$T_g (f)(z) = \int\limits_0^{z_{} } { \cdots \int\limits_0^{z_n } {f(\zeta _1 , \ldots ,\zeta _n )} g(\zeta _1 , \ldots ,\zeta _n )d\zeta _1 , \ldots ,\zeta _n } $
in the space of analytic functions on the unit polydisk U n in the complex vector space ?n. We show that the operator is bounded in the mixed norm space
, with p, q ∈ [1, ∞) and α = (α1, …, αn), such that αj > ?1, for every j = 1, …, n, if and only if \(\sup _{z \in U^n } \prod\nolimits_{j = 1}^n {\left( {1 - \left| {z_j } \right|} \right)} \left| {g(z)} \right| < \infty \). Also, we prove that the operator is compact if and only if \(\lim _{z \to \partial U^n } \prod\nolimits_{j = 1}^n {\left( {1 - \left| {z_j } \right|} \right)} \left| {g(z)} \right| = 0\).
  相似文献   

6.
We give a lower bound for the numerical index of the real space L p (µ) showing, in particular, that it is non-zero for p ≠ 2. In other words, it is shown that for every bounded linear operator T on the real space L p (µ), one has
$\sup \left\{ {|\int {|x{|^{p - 1}}{\rm{sign}}(x)Tx d\mu |:x \in {L_p}\left( \mu \right), ||x|| = 1} } \right\} \ge {{{M_p}} \over {12{\rm{e}}}}||T||$
where \({M_p} = {\max _{t \in \left[ {0,1} \right]}}{{|{t^{p - 1}} - t|} \over {1 + {t^p}}} > 0\) for every p ≠ 2. It is also shown that for every bounded linear operator T on the real space L p (µ), one has
$\sup \left\{ {\int {|x{|^{p - 1}}|Tx| d\mu :x \in {L_p}\left( \mu \right), ||x|| = 1} } \right\} \ge {1 \over {2{\rm{e}}}}||T||$
.
  相似文献   

7.
The paper proves that for any ε > 0 there exists ameasurable set E ? [0, 1] with measure |E| > 1 ? ε such that for each f ∈ L1[0, 1] there is a function \(\tilde f \in {L^1}\left[ {0,1} \right]\) coinciding with f on E whose Fourier-Walsh series converges to \(\tilde f\) in L1[0, 1]-norm, and the sequence \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \) is monotonically decreasing, where \(\left\{ {{c_k}\left( {\tilde f} \right)} \right\}\) is the sequence of Fourier-Walsh coefficients of \(\left\{ {\left| {{c_k}\left( {\tilde f} \right)} \right|} \right\}_{n = 0}^\infty \).  相似文献   

8.
In the space L 2 of real-valued measurable 2π-periodic functions that are square summable on the period [0, 2π], the Jackson-Stechkin inequality
$$E_n (f) \leqslant \mathcal{K}_n (\delta ,\omega )\omega (\delta ,f), f \in L^2 $$
, is considered, where E n (f) is the value of the best approximation of the function f by trigonometric polynomials of order at most n and ω(δ, f) is the modulus of continuity of the function f in L 2 of order 1 or 2. The value
$$\mathcal{K}_n (\delta ,\omega ) = \sup \left\{ {\frac{{E_n (f)}}{{\omega (\delta ,f)}}:f \in L^2 } \right\}$$
is found at the points δ = 2π/m (where m ∈ ?) for m ≥ 3n 2 + 2 and ω = ω 1 as well as for m ≥ 11n 4/3 ? 1 and ω = ω 2.
  相似文献   

9.
Let {X n }n?≥?1 be a sequence of strictly stationary m-dependent random variableswith EX1 = 0 and \( \mathrm{E}{X}_1^2<\infty \), and let (b n ) be an increasing sequence of positive numbers such that b n ?↑?∞ and \( {b}_n/\sqrt{n}\downarrow 0\kern0.5em \mathrm{as}\kern0.5em n\to \infty \). We establish a moderate deviation principle of \( {\left({b}_n\sqrt{n}\right)}^{-1}{\sum}_{i=1}^n{X}_i \) under the condition
$$ \underset{n\to \infty }{\lim \sup}\frac{1}{b_n^2}\log \left[n\mathbf{P}\left(\left|{X}_1\right|>{b}_n\sqrt{n}\right)\right]=-\infty, $$
which is weaker than the classical exponential integrability condition. The results in the present paper weaken the assumptions of Chen [5] and extend partially the results of Eichelsbacher and Löwe [10].  相似文献   

10.
Let X i = {X i (t), tT} be i.i.d. copies of a centered Gaussian process X = {X(t), tT} with values in\( {\mathbb{R}^d} \) defined on a separable metric space T. It is supposed that X is bounded. We consider the asymptotic behavior of convex hulls
$ {W_n} = {\text{conv}}\left\{ {{X_1}(t), \ldots, {X_n}(t),\,\,t \in T} \right\} $
and show that, with probability 1,
$ \mathop {{\lim }}\limits_{n \to \infty } \frac{1}{{\sqrt {{2\ln n}} }}{W_n} = W $
(in the sense of Hausdorff distance), where the limit shape W is defined by the covariance structure of X: W = conv{K t , tT}, Kt being the concentration ellipsoid of X(t). We also study the asymptotic behavior of the mathematical expectations E f(W n ), where f is an homogeneous functional.
  相似文献   

11.
In this paper we obtain a necessary and sufficient condition on the sequence of natural numbers {q n } such that the almost everywhere convergence of the cubic partial sums S qn (x) of the multiple Haar series Σn a nχn(x) and the condition lim inf \(\lambda \cdot mes\left\{ {x:\begin{array}{*{20}{c}} {\sup } \\ n \end{array}\left| {S{}_{qn}\left( x \right)} \right| \succ \lambda } \right\} = 0\), imply that the coefficients a n can be uniquely determined by the sum of the series. Also, we have obtained a necessary and sufficient condition for the series \(\sum\limits_{n = 1}^\infty {{\varepsilon _n}{a_n}} {\chi _n}\left( x \right)\) with an arbitrary bounded sequence {ε n} to be a Fourier-Haar series of an A-integrable function.  相似文献   

12.
Suppose that λ1, λ2, λ3, λ4 are nonzero real numbers, not all negative, δ > 0, V is a well-spaced set, and the ratio λ12 is algebraic and irrational. Denote by E(V,N, δ) the number of vV with vN such that the inequality
$$\left| {{\lambda _1}p_1^2 + {\lambda _2}p_2^3 + {\lambda _3}p_3^4 + {\lambda _4}p_4^5 - \upsilon } \right| < {\upsilon ^{ - \delta }}$$
has no solution in primes p1, p2, p3, p4. We show that
$$E\left( {\upsilon ,N,\delta } \right) \ll {N^{1 + 2\delta - 1/72 + \varepsilon }}$$
for any ? > 0.
  相似文献   

13.
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:?????(-?)~mu(x)=u~p(x)/|x|~s,in R_+~n,u(x)=-?u(x)=…=(-?)~(m-1)u(x)=0,on ?R_+~n,(0.1)where m is any positive integer satisfying 02mn.We first prove that the positive solutions of(0.1)are super polyharmonic,i.e.,(-?)~iu0,i=0,1,...,m-1.(0.2) For α=2m,applying this important property,we establish the equivalence between (0.1) and the integral equation u(x)=c_n∫R_+~n(1/|x-y|~(n-α)-1/|x~*-y|~(n-α))u~p(y)/|y|~sdy,(0.3) where x~*=(x1,...,x_(n-1),-x_n) is the reflection of the point x about the plane R~(n-1).Then,we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of(0.3),in whichαcan be any real number between 0 and n.By some Pohozaev type identities in integral forms,we prove a Liouville type theorem—the non-existence of positive solutions for(0.1).  相似文献   

14.
We present simple proofs of a result of L.D. Pustylnikov extending to nonautonomous dynamics the Siegel theorem of linearization of analytic mappings. We show that if a sequence f n of analytic mappings of C d has a common fixed point f n (0) = 0, and the maps f n converge to a linear mapping A∞ so fast that
$$\sum\limits_n {{{\left\| {{f_m} - {A_\infty }} \right\|}_{L\infty \left( B \right)}} < \infty } $$
$${A_\infty } = diag\left( {{e^{2\pi i{\omega _1}}},...,{e^{2\pi i{\omega _d}}}} \right)\omega = \left( {{\omega _1},...,{\omega _q}} \right) \in {\mathbb{R}^d},$$
then f n is nonautonomously conjugate to the linearization. That is, there exists a sequence h n of analytic mappings fixing the origin satisfying
$${h_{n + 1}} \circ {f_n} = {A_\infty }{h_n}.$$
The key point of the result is that the functions hn are defined in a large domain and they are bounded. We show that
$${\sum\nolimits_n {\left\| {{h_n} - Id} \right\|} _{L\infty (B)}} < \infty .$$
We also provide results when f n converges to a nonlinearizable mapping f∞ or to a nonelliptic linear mapping. In the case that the mappings f n preserve a geometric structure (e. g., symplectic, volume, contact, Poisson, etc.), we show that the hn can be chosen so that they preserve the same geometric structure as the f n . We present five elementary proofs based on different methods and compare them. Notably, we consider the results in the light of scattering theory. We hope that including different methods can serve as an introduction to methods to study conjugacy equations.
  相似文献   

15.
Let n, k, α be integers, n, α>0, p be a prime and q=p α. Consider the complete q-uniform family
$\mathcal{F}\left( {k,q} \right) = \left\{ {K \subseteq \left[ n \right]:\left| K \right| \equiv k(mod q)} \right\}$
We study certain inclusion matrices attached to F(k,q) over the field\(\mathbb{F}_p \). We show that if l≤q?1 and 2ln then
$rank_{\mathbb{F}_p } I(\mathcal{F}(k,q),\left( {\begin{array}{*{20}c} {\left[ n \right]} \\ { \leqslant \ell } \\ \end{array} } \right)) \leqslant \left( {\begin{array}{*{20}c} n \\ \ell \\ \end{array} } \right)$
This extends a theorem of Frankl [7] obtained for the case α=1. In the proof we use arguments involving Gröbner bases, standard monomials and reduction. As an application, we solve a problem of Babai and Frankl related to the size of some L-intersecting families modulo q.  相似文献   

16.
We consider the Schrödinger operator
$$ \text{-} \frac{d^{2}}{d x^{2}} + V {\text{on an interval}}~~[a,b]~{\text{with Dirichlet boundary conditions}},$$
where V is bounded from below and prove a lower bound on the first eigenvalue λ 1 in terms of sublevel estimates: if w V (y) = |{x ∈ [a, b] : V (x) ≤ y}|, then
$$\lambda_{1} \geq \frac{1}{250} \min\limits_{y > \min V}{\left( \frac{1}{w_{V}(y)^{2}} + y\right)}.$$
The result is sharp up to a universal constant if {x ∈ [a, b] : V(x) ≤ y} is an interval for the value of y solving the minimization problem. An immediate application is as follows: let \({\Omega } \subset \mathbb {R}^{2}\) be a convex domain and let \(u:{\Omega } \rightarrow \mathbb {R}\) be the first eigenfunction of the Laplacian ? Δ on Ω with Dirichlet boundary conditions on ?Ω. We prove
$$\| u \|_{L^{\infty}({\Omega})} \lesssim \frac{1}{\text{inrad}({\Omega})} \left( \frac{\text{inrad}({\Omega})}{\text{diam}({\Omega})} \right)^{1/6} \|u\|_{L^{2}({\Omega})},$$
which answers a question of van den Berg in the special case of two dimensions.
  相似文献   

17.
Let M Ω be the maximal operator with homogeneous kernel Ω. In the present paper, we show that if Ω satisfies the L 1-Dini condition on ?? n?1, then the following weak type (1,1) behaviors
$$\lim\limits _{\lambda \rightarrow 0_{+}}\lambda m(\{x\in \mathbb {R}^{n}:M_{\Omega } f(x)>\lambda \})=\frac {1}{n} \|\Omega \|_{1} \|f\|_{1},$$
$$\sup\limits_{\lambda >0}\lambda m(\{x\in \mathbb {R}^{n}:M_{\Omega } f(x)>\lambda \})\lesssim {\bigg ((\log n)\|\Omega \|_{1}+{\int }_{0}^{1/n}\frac {\tilde {\omega }_{1}(\delta )}{\delta }d\delta \bigg )}\|f\|_{1}$$
hold for the maximal operator M Ω and \(f\in L^{1}(\mathbb {R}^{n})\), here \(\tilde {\omega }_{1}\) denotes the L 1 integral modulus of continuity of Ω defined by translation in \(\mathbb {R}^{n}\).  相似文献   

18.
In this paper we establish the following estimate:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant \frac{{{c_T}}}{{{\varepsilon ^2}}}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right){M_{L{{\left( {\log L} \right)}^{1 + \varepsilon }}}}} \omega \left( x \right)dx$$
where ω ≥ 0, 0 < ε < 1 and Φ(t) = t(1 + log+(t)). This inequality relies upon the following sharp L p estimate:
$${\left\| {\left[ {b,T} \right]f} \right\|_{{L^p}\left( \omega \right)}} \leqslant {c_T}{\left( {p'} \right)^2}{p^2}{\left( {\frac{{p - 1}}{\delta }} \right)^{\frac{1}{{p'}}}}{\left\| b \right\|_{BMO}}{\left\| f \right\|_{{L^p}\left( {{M_{L{{\left( {{{\log }_L}} \right)}^{2p - 1 + {\delta ^\omega }}}}}} \right)}}$$
where 1 < p < ∞, ω ≥ 0 and 0 < δ < 1. As a consequence we recover the following estimate essentially contained in [18]:
$$\omega \left( {\left\{ {x \in {\mathbb{R}^n}:\left| {\left[ {b,T} \right]f\left( x \right)} \right| > \lambda } \right\}} \right) \leqslant {c_T}{\left[ \omega \right]_{{A_\infty }}}{\left( {1 + {{\log }^ + }{{\left[ \omega \right]}_{{A_\infty }}}} \right)^2}\int_{{\mathbb{R}^n}} {\Phi \left( {{{\left\| b \right\|}_{BMO}}\frac{{\left| {f\left( x \right)} \right|}}{\lambda }} \right)M} \omega \left( x \right)dx.$$
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.
  相似文献   

19.
A Shilla graph is defined as a distance-regular graph of diameter 3 with second eigen-value θ1 equal to a3. For a Shilla graph, let us put a = a3 and b = k/a. It is proved in this paper that a Shilla graph with b2 = c2 and noninteger eigenvalues has the following intersection array:
$$\left\{ {\frac{{{b^2}\left( {b - 1} \right)}}{2},\frac{{\left( {b - 1} \right)\left( {{b^2} - b + 2} \right)}}{2},\frac{{b\left( {b - 1} \right)}}{4};1,\frac{{b\left( {b - 1} \right)}}{4},\frac{{b{{\left( {b - 1} \right)}^2}}}{2}} \right\}$$
If Γ is a Q-polynomial Shilla graph with b2 = c2 and b = 2r, then the graph Γ has intersection array
$$\left\{ {2tr\left( {2r + 1} \right),\left( {2r + 1} \right)\left( {2rt + t + 1} \right),r\left( {r + t} \right);1,r\left( {r + t} \right),t\left( {4{r^2} - 1} \right)} \right\}$$
and, for any vertex u in Γ, the subgraph Γ3(u) is an antipodal distance-regular graph with intersection array
$$\left\{ {t\left( {2r + 1} \right),\left( {2r - 1} \right)\left( {t + 1} \right),1;1,t + 1,t\left( {2r + 1} \right)} \right\}$$
The Shilla graphs with b2 = c2 and b = 4 are also classified in the paper.
  相似文献   

20.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号