首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Periodate oxidation followed by borohydride reduction converts the well-known antithrombotics heparin and low-molecular-weight heparins (LMWHs) into their “glycol-split” (gs) derivatives of the “reduced oxyheparin” (RO) type, some of which are currently being developed as potential anti-cancer and anti-inflammatory drugs. Whereas the structure of gs-heparins has been recently studied, details of the more complex and more bioavailable gs-LMWHs have not been yet reported. We obtained RO derivatives of the three most common LMWHs (tinzaparin, enoxaparin, and dalteparin) and studied their structures by two-dimensional nuclear magnetic resonance spectroscopy and ion-pair reversed-phase high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. The liquid chromatography–mass spectrometry (LC-MS) analysis was extended to their heparinase-generated oligosaccharides. The combined NMR/LC-MS analysis of RO-LMWHs provided evidence for glycol-splitting-induced transformations mainly involving internal nonsulfated glucuronic and iduronic acid residues (including partial hydrolysis with formation of “remnants”) and for the hydrolysis of the gs uronic acid residues when formed at the non-reducing ends (mainly, in RO-dalteparin). Evidence for minor modifications, such as ring contraction of some dalteparin internal aminosugar residues, was also obtained. Unexpectedly, the N-sulfated 1,6-anhydromannosamine residues at the enoxaparin reducing end were found to be susceptible to the periodate oxidation. In addition, in tinzaparin and enoxaparin, the borohydride reduction converts the hemiacetalic aminosugars at the reducing end to alditols. Typical LC-MS signatures of RO-derivatives of individual LMWH both before and after digestion with heparinases included oligosaccharides generated from the original antithrombin-binding and “linkage” regions.
Figure
?  相似文献   

2.
A series of new benzo-15-crown-5 derivatives (16) containing formyl and imine groups were prepared. New formyl crown ethers (1 and 2) were prepared by reaction of 4′,5′-bis(bromomethyl)benzo-15-crown-5 with 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) and 2-hydroxy-5-methoxybenzaldehyde in the presence of NaOH. New Schiff bases (36) were synthesized by the condensation of corresponding aldehydes with 1,3-diaminopropane and 1,4-diaminobutane. Sodium and potassium complexes (1a6a and 1b6b) of the crown compounds forming crystalline complexes of 1:1 (Na+:ligand) and 1:2 (K+:ligand) stoichiometries were also synthesized. The structures of the aldehydes 1 and 2, imines 36 and complexes (1a3a and 1b3b) were confirmed on the basis of elemental analyses, IR, 1H- and 13C-NMR, and mass spectroscopy.  相似文献   

3.
Global analyses of DNA methylation contribute important insights into biology and the wide-ranging role of DNA methylation. We describe the use of online solid-phase extraction and isotope-dilution liquid chromatography/tandem mass spectrometry (LC-MS/MS) for the simultaneous measurement of 5-methyl-2′-deoxycytidine (5-medC) and 2′-deoxycytidine (dC) in DNA. With the incorporation of isotope internal standards and online enrichment techniques, the detection limit of this method was estimated to be as low as 0.065 pg which enables human global DNA methylation detection using only picogram amounts of DNA. This method was applied to assess the optimal amounts of enzymes required for DNA digestion regarding an accurate global DNA methylation determination and completeness of digestion and to determine global methylation in human tumor adjacent lung tissue of 79 lung cancer patients. We further determined methylated (N7-methylguanine (N7-meG), O 6-methylguanine (O 6-meG), and N3-methyladenine (N3-meA)) and oxidized DNA lesions (8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG)) in lung cancer patients by LC-MS/MS. Optimization experiments revealed that dC was liberated from DNA much more readily than 5-medC by nuclease P1 and alkaline phosphatase (AP) in DNA, which could lead to an error in the global DNA methylation measurement following digestion with insufficient enzymes. Nuclease P1 showed more differential activity for 5-medC and dC than AP. Global DNA methylation levels in adenocarcinoma and squamous cell carcinoma patients were similar in the range of 3.16–4.01 %. Global DNA methylation levels were not affected by smoking and gender and were not correlated with N7-meG or 8-oxodG in lung cancer patients. Levels of O 6-meG and N3-meA were however found to be undetectable in all lung tissue samples.
Figure
Optimization of global DNA methylation detection  相似文献   

4.
Apurinic/apyrimidinic (AP) sites are common DNA lesions arising from spontaneous hydrolysis of the N-glycosidic bond and base-excision repair mechanisms of the modified bases. Due to the strong association of AP site formation with physically/chemically induced DNA damage, quantifying AP sites provides important information for risk assessment of exposure to genotoxins and oxidative stress. However, rigorous quantification of AP sites in DNA has been hampered by technical problems relating to the sensitivity and selectivity of existing analytical methods. We have developed a new isotope dilution liquid chromatography–coupled tandem mass spectrometry (LC-MS/MS) method for the rigorous quantification of AP sites in genomic DNA. The method entails enzymatic digestion of AP site-containing DNA by endo- and exonucleases, derivatization with pentafluorophenylhydrazine (PFPH), addition of an isotopically labeled PFPH derivative as internal standard, and quantification by LC-MS/MS. The combination of PFPH derivatization with LC-MS/MS analysis on a triple quadrupole mass spectrometer allows for sensitive and selective quantification of AP sites in DNA at a detection limit of 6.5 fmol, corresponding to 4 AP sites/109 nt in 5 μg of DNA, which is at least ten times more sensitive than existing analytical methods. The protocol was validated by AP site-containing oligonucleotides and applied in quantifying methyl methanesulfonate-induced formation of AP sites in cellular DNA.
Fig
Chemistry of apurinic/apyrimidinic site formation  相似文献   

5.
Collision-induced dissociation (CID) of protonated N-benzylindoline and its derivatives was investigated by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Elimination of benzene was observed besides hydride transfer and electron transfer reactions. D-labeling experiments and accurate mass determinations of the product ions confirm that the external proton is retained in the fragment ion, and the elimination reaction was proposed to be initiated by benzyl cation transfer rather than proton transfer. Benzyl cation transfer from the nitrogen atom to one of the sp2-hybridized carbon atoms in the indoline core is the key step, and subsequent proton transfer reaction leads to the elimination of benzene. Density functional theory (DFT)-based calculations were performed and the computational results also support the benzyl cation/proton transfer mechanism.
Figure
?  相似文献   

6.
The aim of this study was to evaluate the biological and chemical response of Allium cepa L. exposed to inorganic selenium compounds. Besides the investigation of the total content of selenium as well as its chemical speciation, the Allium test was used to evaluate the growth of onion roots and mitotic activity in the roots’ meristem. The total content of selenium was determined by inductively coupled plasma mass spectrometry (ICP MS). High-performance liquid chromatography (HPLC), coupled to ICP MS, was used for the selenium chemical speciation. Results indicated that A. cepa plants are able to biotransform inorganic selenium compounds into their organic derivatives, e.g., Se-methylselenocysteine from the Se(IV) inorganic precursor. Although the differences in the biotransformation of selenium are due mainly to the oxidation state of selenium, the experiment has also shown a fine effect of counter ions (H+, Na+, NH4 +) on the response of plants and on the specific metabolism of selenium.
Figure
?  相似文献   

7.
Aromatase (CYP 19A1) is a key steroidogenic enzyme that catalyzes the conversion of androgen to estrogen. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for aromatase inhibitor screening was developed and validated. The substrate androstenedione was incubated with human CYP 19A1 supersomes in the presence of NADPH for 30 min, and estrone formation was determined by LC-MS/MS analysis. Cortisone was used as internal standard. The incubation mixture was extracted using a liquid-liquid extraction method with ethyl acetate. Chromatographic separation was achieved using a C18 column (3.0?×?50 mm, 2.7 μm) with a mobile phase consisting of 0.1 % formic acid/acetonitrile adopting gradient elution at a flow rate of 0.4 mL/min. The mass spectrometer was operated in positive electrospray ionization mode. The precursor-product ion pairs used for multiple reaction monitoring were m/z 287→97 (androstenedione), m/z 271?→?159 (estrone), and m/z 361?→?163 (IS, cortisone). The developed method met the required criteria for the validation of bioanalytical methods. The validated method was successfully applied to evaluate aromatase inhibitory activity of plants extracts of Simaroubaceae.
Figure
Determination of estrone formation by LC-MS/MS analysis for aromatase inhibitor screening  相似文献   

8.
We describe the implementation and characterization of activated ion electron transfer dissociation (AI-ETD) on a hybrid QLT-Orbitrap mass spectrometer. AI-ETD was performed using a collision cell that was modified to enable ETD reactions, in addition to normal collisional activation. The instrument manifold was modified to enable irradiation of ions along the axis of this modified cell with IR photons from a CO2 laser. Laser power settings were optimized for both charge (z) and mass to charge (m/z) and the instrument control firmware was updated to allow for automated adjustments to the level of irradiation. This implementation of AI-ETD yielded 1.6-fold more unique identifications than ETD in an nLC-MS/MS analysis of tryptic yeast peptides. Furthermore, we investigated the application of AI-ETD on large scale analysis of phosphopeptides, where laser power aids ETD, but can produce b- and y-type ions because of the phosphoryl moiety’s high IR adsorption. nLC-MS/MS analysis of phosphopeptides derived from human embryonic stem cells using AI-ETD yielded 2.4-fold more unique identifications than ETD alone, demonstrating a promising advance in ETD sequencing of PTM containing peptides.
Figure
?  相似文献   

9.
An optimised and validated method for the determination of pharmaceutical residues in blue mussels (Mytilus spp.) is presented herein, as well as an investigation of the effect of cooking (by steaming) on any potential difference in human exposure risk. Selected pharmaceuticals included two non-steroidal anti-inflammatory drugs (diclofenac and mefenamic acid), an antibiotic (trimethoprim), an anti-epileptic (carbamazepine) and a lipid regulator (gemfibrozil). An in vivo exposure experiment was set up in the laboratory in which mussels were exposed either directly by injection (10 ng) or daily through spiked artificial seawater (ASW) over 96 h. In liquid matrices, pharmaceutical residues were either determined using liquid chromatography–tandem mass spectrometry (LC-MS/MS) directly, or in combination with solid-phase extraction (SPE) for analyte concentration purposes. The extraction of pharmaceuticals from mussel tissues used an additional pressurised liquid extraction step prior to SPE and LC-MS/MS. Limits of quantification of between 2 and 46 ng L?1 were achieved for extracted cooking water and ASW, between 2 and 64 μg L?1 for ASW in exposure tanks, and between 4 and 29 ng g?1 for mussel tissue. Method linearities were achieved for pharmaceuticals in each matrix with correlation coefficients of R 2?>?0.975. A selection of exposed mussels was also cooked (via steaming) and analysed using the optimised method to observe any effect on detectable concentrations of parent pharmaceuticals present. An overall increase in pharmaceutical residues in the contaminated mussel tissue and cooking water was observed after cooking.
Figure
Pharmaceutical residues in cooked and uncooked marine bivalves  相似文献   

10.
A reagentless d-sorbitol biosensor based on NAD-dependent d-sorbitol dehydrogenase (DSDH) immobilized in a sol–gel carbon nanotubes–poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD+ cofactor with DSDH in a sol–gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of d-sorbitol at 0.2 V with a sensitivity of 8.7?μA?mmol?1?L?cm?2 and a detection limit of 0.11 mmol?L?1. Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.
Figure
Reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in sol-gel/carbon nanotubes/poly(methylene green) composite  相似文献   

11.
Solid-state structures of sym-dibenzo-16-crown-5 (1) and five derivatives with one or two substituents on the three-carbon bridge have been determined. The derivatives with three sp3-hybridized carbons include sym-(propyl)dibenzo-16-crown-5 (4), sym-(pentafluorophenoxy)-dibenzo-16-crown-5 (5), and sym-[di(methoxymethyl)]dibenzo-16-crown-5 (6). Structures of two derivatives with sp2-hybridization of the central carbon (7 and 8) were also determined. Twisting of the three-carbon bridge causes one of the terminal methylene groups to be oriented within the polyether cavity.  相似文献   

12.
A novel glucose biosensor is presented as that based on a glassy carbon electrode modified with hollow gold nanoparticles (HGNs) and glucose oxidase. The sensor exhibits a better differential pulse voltammetric response towards glucose than the one based on conventional gold nanoparticles of the same size. This is attributed to the good biological conductivity and biocompatibility of HGNs. Under the optimal conditions, the sensor displays a linear range from 2.0?×?10?6 to 4.6?×?10?5?M of glucose, with a detection limit of 1.6?×?10?6?M (S/N?=?3). Good reproducibility, stability and no interference make this biosensor applicable to the determination of glucose in samples such as sports drinks.
Figure
A novel glucose biosensor was prepared based on glucose oxidase, hollow gold nanoparticles and chitosan modified glassy carbon electrode. The electrode showed a good response for the glucose. The sensor has been verified by the determination of glucose in sport drink  相似文献   

13.
To elucidate the influence of amino (-NH2) and acetamide (-NHCOCH3, -NAc) groups in sugar chains on their ionization and fragmentation, cycloamyloses (cyclodextrins, CyDs) and lacto-oligosaccharide are analyzed by MALDI TOF/TOF and ESI Q-TOF mass spectrometry. CyD derivatives substituted by amino or acetamide groups are ideal analytes to extract the function group effects, which are amino-CyD with one hexosamine (HexNH2) and acetamide-CyD with one N-acetyl hexosamine (HexNAc). Interestingly, the relative ion intensities and isotope-like patterns in their product ion spectra depend on the functional groups and ion forms of sugar chains. Consequently, the results indicate that a proton (H+) localizes on the amino group of the amino sugar, and that the proton (H+) induces their fragmentation. Sodium cation (Na+) attachment is independent from amino group and exerts no influence on their fragmentation patterns in amino group except for mono- and disaccharide fragment ions because there is the possibility of the reducing end effect. In contrast, a sodium cation localizes much more frequently on the acetamide group in acetamide-CyDs because the chemical species with HexNAc are stable. Thus, their ions with HexNAc are abundant. These results are consistent with the fragmentation of lacto-neo-N-tetraose and maltotetraose, suggesting that a sodium cation generally localizes much more frequently on the acetamide group in sugar chains.
Graphical abstract
?  相似文献   

14.
Hazelnut (Corylus avellana L.) is responsible for a significant part of the allergies related to nuts. Still, it is a very much appreciated nut and as consequence is widely used in all types of processed foods, such as chocolates. Correct food labelling is currently the most effective means of preventing the consumption of allergenic ingredients, namely hazelnut, by the sensitised/allergic individuals. Thus, to verify labelling compliance and to ensure allergic patient protection, the development of highly sensitive methodologies is of extreme importance. In this study, three major methodologies, namely enzyme-linked immunosorbent assays (ELISA), liquid chromatography coupled with mass spectrometry and real-time polymerase chain reaction, were evaluated for their performance regarding the detection of hazelnut allergens in model chocolates. The sandwich ELISA and respective antibodies were in-house developed and produced. With sensitivity levels of approximately 1 mg kg?1 and limits of quantification of 50–100 mg kg?1, all the performed methods were considered appropriate for the identification of hazelnut in complex foods such as chocolates. To our knowledge, this was the first successful attempt to develop and compare three independent approaches for the detection of allergens in foods.
Figure
LC-MS/MS, ELISA and real-time PCR for hazelnut allergen detection  相似文献   

15.
The use of the direct inlet probe–atmospheric-pressure chemical ionization (DIP-APCI) ion source developed in our laboratory coupled to a high resolution Q-TOF MS for the quantitative analysis of coumarin in different cinnamon samples was demonstrated in this study. Extraction of coumarin from various cinnamon samples was followed by DIP-APCI-mass spectrometry (MS) and liquid chromatography (LC)-MS analysis. For quantification, an external calibration with and without the use of stable isotope-labeled coumarin as internal standard was compared. The results obtained by DIP-APCI-MS and LC-MS were in good agreement. Even without the use of an internal standard satisfying linearity (R 2?>?0.997), recovery (94–104 % for spiking levels between 100 and 5,000 mg/kg) and intra- and interday repeatability (2.2–13.8 %RSD) was demonstrated using DIP-APCI-MS. To reduce the number of samples requiring quantitative analysis, the possibility of semi-quantitative screening of coumarin directly from powdered cinnamon using DIP-APCI-MS was shown. The analysis of woodruff-flavored beverages and cinnamon-flavored chewing gum by DIP-APCI-MS resulted in the formation of an artifact interfering with coumarin detection. As with other ambient ionization methods, special attention has to be paid to possible spectral interferences due to isobaric substances present in the sample matrix or formed from matrix components after ionization. The temperature-programmed vaporization in DIP-APCI-MS combined with the use of stable isotope-labeled coumarin as internal standard helped in recognizing this interference.
Figure
?  相似文献   

16.
A simple, cheap, and nonpolluting method was developed for the cloud point extraction of gold (Au) and palladium (Pd). It is based on the complexation reaction of Au and Pd with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and micelle mediated extraction of the complex using the non-ionic surfactant poly(ethylene glycol) mono-p-nonylphenyl ether (PONPE 7.5). Under the optimized experimental conditions, the enrichment factors are 16 and 17 for Au and Pd, respectively, for 15?mL of preconcentrated solution. The limits of detection are 3.8???g?L?1 and 1.8???g?L?1 for Au and Pd, respectively. The relative standard deviations are 1.4% for Au and 0.6% for Pd (n?=?11). The method was successfully applied to the determination of Au and Pd in certified reference materials and mine samples.
Figure
CPE of gold(III) and palladium(II)  相似文献   

17.
The present study dealt with the forced degradation behaviour of rosuvastatin under ICH prescribed stress conditions. The drug was found to be labile under acid hydrolytic and photolytic conditions, while it was stable to base/neutral hydrolytic, oxidative and thermal stress. In total, 11 degradation products were formed, which were separated on a C-18 column using a stability-indicating method. LC-MS analyses indicated that five degradation products had the same molecular mass as that of the drug, while the remaining six had 18 Da less than the drug. Structure elucidation of all the degradation products was executed using sophisticated and modern structural characterization tools, viz. LC-MS/TOF, LC-MSn, on-line H/D exchange and LC-NMR. The degradation pathway and mechanisms of degradation of the drug were delineated. Additionally, in silico toxicity was predicted for all the degradation products using TOPKAT and DEREK software and compared with the drug. This study demonstrates a comprehensive approach of degradation studies during the drug development phase.
Figure
Degradation pathway of rosuvastatin  相似文献   

18.
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2] ̄?. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
Figure
?  相似文献   

19.
The study presents for the first time a systematic investigation of matrix effects in the LC-MS/MS analysis of ergot alkaloids in cereals. In order to assure the accuracy of the results, several approaches to minimize/eliminate matrix effects were investigated including variation of ionization techniques, chromatography and sample preparation on different grain types and grain varieties. It was revealed that the use of UPLC and careful choice of sample preparation might reduce signal suppression/enhancement. In general, ergometrine was found to be the most susceptible among the ergot alkaloids studied, but none of the used approaches suggested a total elimination of matrix effects; only less than half of its MS signal could be recovered. The late-eluting compounds were less affected by matrix components in all conditions tested. Further, the robustness of the applied LC-MS method was checked by means of a fractional factorial design. The results indicate that small changes to the sample preparation parameters, namely pH and concentration of extraction buffer, shaking time, drying temperature and extraction volumes, did not significantly (α?=?0.05) affect the recoveries of ergot alkaloids.
Figure
SSE (%) applying different sample preparation procedures  相似文献   

20.
We describe a new method for differential-pulse anodic stripping voltammetric determination of thallium(I) using a carbon paste electrode modified with dicyclohexyl-18-crown-6. The effect of supporting electrolyte (type and pH), accumulation and reduction potential, and of time and amount of modifier were investigated by differential pulse anodic stripping voltammetry. A method was then worked out for the determination of thallium at low levels. Under optimized conditions, the response to Tl(I) is linear in the range from 3.0 to 250 ng mL?1. The detection limit is 0.86 ng mL?1. The sensor displays good repeatability (with a relative standard deviation of ±2.70 % for n?=?7) and was applied to the determination of Tl(I) in water, hair samples, and certified reference materials.
Figure
Crown ethers allow only some ions to entry and complex formation that their sizes equal to ether cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号