共查询到20条相似文献,搜索用时 15 毫秒
1.
Ying Wang Jingyan YouRuibing Ren Yao XiaoShiqian Gao Hanqi ZhangAimin Yu 《Journal of chromatography. A》2010,1217(26):4241-4246
Dispersive liquid–liquid microextraction (DLLME) high-performance liquid chromatography (HPLC) was developed for extraction and determination of triazines from honey. A room temperature ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate [C6MIM][PF6.], was used as extraction solvent and Triton X 114 was used as dispersant. A mixture of 175 μL [C6MIM][PF6] and 50 μL 10% Triton X 114 was rapidly injected into the 20 mL honey sample by syringe. After extraction, phase separation was performed by centrifugation and the sedimented phase was analyzed by HPLC. Some experimental parameters, such as type and volume of extraction solvent, concentration of dispersant, pH value of sample solution, salt concentration and extraction time were investigated and optimized. The detection limits for chlortoluron, prometon, propazine, linuron and prebane are 6.92, 5.84, 8.55, 8.59 and 5.31 μg kg−1, respectively. The main advantages of the proposed method are simplicity of operation, low cost, high enrichment factor and extraction solvent volume at microliter level. Honey samples were analyzed by the proposed method and obtained results indicated that the proposed method provides acceptable recoveries and precisions. 相似文献
2.
Chunxia Wu Huimin Liu Weihua Liu Qiuhua Wu Chun Wang Zhi Wang 《Analytical and bioanalytical chemistry》2010,397(6):2543-2549
A simple dispersive liquid–liquid microextraction based on solidification of floating organic droplet coupled with high-performance
liquid chromatography–diode array detection was developed for the determination of five organophosphorus pesticides (OPs)
in water samples. In this method, the extraction solvent used is of low density, low toxicity, and proper melting point near
room temperature. The extractant droplet could be collected easily by solidifying it in the lower temperature. Some important
experimental parameters that affect the extraction efficiencies were optimized. Under the optimum conditions, the calibration
curve was linear in the concentration range from 1 to 200 ng mL−1 for the five OPs (triazophos, parathion, diazinon, phoxim, and parathion-methyl), with the correlation coefficients (r) varying from 0.9991 to 0.9998. High enrichment factors were achieved ranging from 215 to 557. The limits of detection were
in the range between 0.1 and 0.3 ng mL−1. The recoveries of the target analytes from water samples at spiking levels of 5.0 and 50.0 ng mL−1 were 82.2–98.8% and 83.6–104.0%, respectively. The relative standard deviations fell in the range of 4.4% to 6.3%. The method
was suitable for the determination of the OPs in real water samples. 相似文献
3.
Mir Ali Farajzadeh Mohammad Reza Afshar Mogaddam Behruz Feriduni Ali Akbar Alizadeh 《Journal of the Iranian Chemical Society》2017,14(3):551-559
In this study, for the first time, an organic solvent-free air-assisted liquid–liquid microextraction method has been reported for the extraction and preconcentration of phthalic acids (o-phthalic acid, m-phthalic acid, and p-phthalic acid) from edible oil samples. The method is based on the repeated aspirating/injection of an alkaline aqueous solution and the oil sample mixture in a conical bottom centrifuge tube to form a cloudy solution. After phase separation by centrifuging, the sedimented phase is directly analyzed by high-performance liquid chromatography–diode array detection. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.11–0.29 and 0.28–0.91 ng mL?1, respectively. Extraction recoveries and enrichment factors were from 81 to 97% and 406 to 489, respectively. The relative standard deviations for the analysis of 5 ng mL?1 of each analyte were less than 5.9% for intraday (n = 6) and interday (n = 5) precisions. Finally, different oil samples were successfully analyzed using the proposed method and m-phthalic acid, and p-phthalic acid were determined in some of them at ng mL?1 level. 相似文献
4.
Julia Martín Dolores Camacho-MuñozJuan Luis Santos Irene AparicioEsteban Alonso 《Analytica chimica acta》2013
A dispersive liquid–liquid microextraction (DLLME) method followed by high-performance liquid chromatography–triple quadrupole mass spectrometry has been developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS C10, C11, C12, and C13), nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), and di-(2-ethylhexyl)phthalate (DEHP). The applicability of the method has been tested by the determination of the above mentioned organic pollutants in tap water and wastewater. Several parameters affecting DLLME, such as, the type and volume of the extraction and disperser solvents, sample pH, ionic strength and number of extractions, have been evaluated. Methanol (1.5 mL) was selected among the six disperser solvent tested. Dichlorobenzene (50 μL) was selected among the four extraction solvent tested. Enrichment factor achieved was 80. Linear ranges in samples were 0.01–3.42 μg L−1 for LAS C10–13 and NP2EO, 0.09–5.17 μg L−1 for NP1EO, 0.17–9.19 μg L−1 for NP and 0.40–17.9 μg L−1 for DEHP. Coefficients of correlation were higher than 0.997. Limits of quantitation in tap water and wastewater were in the ranges 0.009–0.019 μg L−1 for LAS, 0.009–0.091 μg L−1 for NP, NP1EO and NP2EO and 0.201–0.224 μg L−1 for DEHP. Extraction recoveries were in the range from 57 to 80%, except for LAS C10 (30–36%). The method was successfully applied to the determination of these pollutants in tap water and effluent wastewater from Seville (South of Spain). The DLLME method developed is fast, easy to perform, requires low solvent volumes and allows the determination of the priority hazardous substances NP and DEHP (Directive 2008/105/EC). 相似文献
5.
M.M. Parrilla Vázquez P. Parrilla VázquezM. Martínez Galera M.D. Gil García 《Analytica chimica acta》2012
An ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction (US-IL-DLLME) procedure was developed for the extraction of eight fluoroquinolones (marbofloxacin, norfloxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, oxolinic acid and nalidixic acid) in groundwater, using high-performance liquid chromatography with fluorescence detection (HPLC-FD). The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution using a small volume of disperser solvent (0.4 mL of methanol), which increased the extraction efficiency and reduced the equilibrium time. 相似文献
6.
Jie-Hong Guo Xing-Hong Li Xue-Li Cao Yan Li Xi-Zhi Wang Xiao-Bai Xu 《Journal of chromatography. A》2009,1216(15):3038-3043
In this study, dispersive liquid–liquid microextraction (DLLME) combined with ultra-high-pressure liquid chromatography (UHPLC)–tunable ultraviolet detection (TUV), has been developed for pre-concentration and determination of triclosan (TCS), triclocarban (TCC) and methyl-triclosan (M-TCS) in aqueous samples. The key factors, including the kind and volume of extraction solvent and dispersive solvent, extraction time, salt effect and pH, which probably affect the extraction efficiencies were examined and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.0500–100 μg L?1 for TCS, 0.0250–50.0 μg L?1 for TCC, and 0.500–100 μg L?1 for M-TCS, respectively, with correlation coefficients (r2) > 0.9945. The limits of detection (LODs) ranged from 45.1 to 236 ng L?1. TCS in domestic waters was detected with the concentration of 2.08 μg L?1. The spiked recoveries of three target compounds in river water, irrigating water, reclaimed water and domestic water samples were achieved in the range of 96.4–121%, 64.3–84.9%, 77.2–115% and 75.5–106%, respectively. As a result, this method can be successfully applied for the rapid and convenient determination of TCS, TCC and M-TCS in real water samples. 相似文献
7.
S. C. Cunha C. Cunha A. R. Ferreira J. O. Fernandes 《Analytical and bioanalytical chemistry》2012,404(8):2453-2463
A new simple and reliable method combining an acetonitrile partitioning extractive procedure followed by dispersive solid-phase cleanup (QuEChERS) with dispersive liquid–liquid microextraction (DLLME) and further gas chromatography mass spectrometry analysis was developed for the simultaneous determination of bisphenol A (BPA) and bisphenol B (BPB) in canned seafood samples. Besides the great enrichment factor provided, the final DLLME extractive step was designed in order to allow the simultaneous acetylation of the compounds required for their gas chromatographic analysis. Tetrachloroethylene was used as extractive solvent, while the acetonitrile extract obtained from QuEChERS was used as dispersive solvent, and anhydride acetic as derivatizing reagent. The main factors influencing QuEChERS and DLLME efficiency including nature of QuEChERS dispersive-SPE sorbents, amount of DLLME extractive and dispersive solvents and nature and amount of derivatizing reagent were evaluated. DLLME procedure provides an effective enrichment of the extract, allowing the required sensitivity even using a single quadropole MS as detector. The optimized method showed to be accurate (>68?% recovery), reproducible (<21?% relative standard deviation) and sensitive for the target analytes (method detection limits of 0.2?μg/kg for BPA and 0.4?μg/kg for BPB). The screening of several canned seafood samples commercialized in Portugal (total?=?47) revealed the presence of BPA in more than 83?% of the samples with levels ranging from 1.0 to 99.9?μg/kg, while BPB was found in only one sample at a level of 21.8?μg/kg. 相似文献
8.
Dispersive liquid—liquid microextraction coupled with high-performance liquid chromatography—diode-array detection was applied
for the extraction and determination of 11 priority pollutant phenols in wastewater samples. The analytes were extracted from
a 5-mL sample solution using a mixture of carbon disulfide as the extraction solvent and acetone as the dispersive solvent.
After extraction, solvent exchange was carried out by evaporating the solvent and then reconstituting the residue in a mixture
of methanol–water (30:70). The influences of different experimental dispersive liquid—liquid microextraction parameters such
as extraction solvent type, dispersive solvent type, extraction and dispersive solvent volume, salt addition, and pH were
studied. Under optimal conditions, namely pH 2, 165-μL extraction solvent volume, 2.50-mL dispersive solvent volume, and no
salt addition, enrichment factors and limits of detection ranged over 30–373 and 0.01–1.3 μg/L, respectively. The relative
standard deviation for spiked wastewater samples at 10 μg/L of each phenol ranged between 4.3 and 19.3% (n = 5). The relative recovery for wastewater samples at a spiked level of 10 μg/L varied from 65.5 to 108.3%. 相似文献
9.
Zhimei Liu Weihua Liu Huan Rao Tao Feng Chao Li Chun Wang 《International journal of environmental analytical chemistry》2013,93(5):571-581
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in watermelon and tomato samples was developed by dispersive liquid–liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detection (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimised to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 10 to 1000?ng?g?1 for all the five carbamate pesticides, with the correlation coefficients (r) varying from 0.9982 to 0.9992. Good enrichment factors were achieved ranging between 80 and 177, depending on the compound. The limits of detection (LODs) (S/N?=?3) were ranged from 0.5 to 1.5?ng?g?1. The method has been successfully applied to the analysis of the pesticide residues in watermelon and tomato samples. The recoveries of the method fell in the range between 76.2% to 94.5% with RSDs less than 9.6%, indicating the feasibility of the DLLME method for the determination of the five carbamate pesticides in watermelon and tomato samples. 相似文献
10.
Ramin Maleki Yousef Nikkhahi 《International journal of environmental analytical chemistry》2013,93(9):1026-1035
A simple and reliable method has been developed for the rapid analysis of trace levels of malachite green from water samples using dispersive liquid–liquid microextraction and high-performance liquid chromatography-diode array detection. Factors relevant to the microextraction efficiency, such as the type and volume of extraction solvent, nature and volume of the disperser solvent, the effect of salt, sample solution temperature and the extraction time were investigated and optimised. Under the optimal conditions the linear dynamic range of malachite green was from 0.2 to 100.0?µg?L?1 with a correlation coefficient of 0.9962. The detection limit and limit of quantification were 0.1?µg?L?1 and 0.3?µg?L?1, respectively. The relative standard deviation (RSD) was less than 2.6% (n?=?5) and the recoveries of malachite green (5.0?µg?L?1) from water samples were in the range of 99.2?±?1.7%. Finally the proposed method was successfully applied for the analysis of malachite green from fish farming water samples. 相似文献
11.
12.
Jin Guan Chi Zhang Yang Wang Yiguang Guo Peiting Huang Longshan Zhao 《Analytical and bioanalytical chemistry》2016,408(28):8099-8109
13.
Qiuhua Wu Chun Wang Zhimei Liu Chunxia Wu Xin Zeng Jialin Wen Zhi Wang 《Journal of chromatography. A》2009,1216(29):5504-5510
Dispersive solid-phase extraction (DSPE) combined with dispersive liquid–liquid microextraction (DLLME) has been developed as a new approach for the extraction of four sulfonylurea herbicides (metsulfuron-methyl, chlorsulfuron, bensulfuron-methyl and chlorimuron-ethyl) in soil prior to high-performance liquid chromatography with diode array detection (HPLC-DAD). In the DSPE-DLLME, sulfonylurea herbicides were first extracted from soil sample into acetone–0.15 mol L−1 NaHCO3 (2:8, v/v). The clean-up of the extract by DSPE was carried out by directly adding C18 sorbent into the extract solution, followed by shaking and filtration. After the pH of the filtrate was adjusted to 2.0 with 2 mol L−1 HCl, 60.0 μL chlorobenzene (as extraction solvent) was added into 5.0 mL of it for DLLME procedure (the acetone contained in the solution also acted as dispersive solvent). Under the optimum conditions, the enrichment factors for the compounds were in the range between 102 and 216. The linearity of the method was in the range from 5.0 to 200 ng g−1 with the correlation coefficients (r) ranging from 0.9967 to 0.9987. The method detection limits were 0.5–1.2 ng g−1. The relative standard deviations varied from 5.2% to 7.2% (n = 5). The relative recoveries of the four sulfonylurea herbicides from soil samples at spiking levels of 6.0, 20.0 and 60.0 ng g−1 were in the range between 76.3% and 92.5%. The proposed method has been successfully applied to the analysis of the four target sulfonylurea herbicides in soil samples, and a satisfactory result was obtained. 相似文献
14.
Giuseppe Cinelli Pasquale Avino Ivan Notardonato Angela Centola Mario Vincenzo Russo 《Analytica chimica acta》2013
An Ultrasound-Vortex-Assisted Dispersive Liquid–Liquid Micro-Extraction (USVADLLME) procedure coupled with Gas Chromatography-Flame Ionization Detector (GC-FID) or Gas Chromatography-Ion Trap Mass Spectrometry (GC-IT/MS) is proposed for rapid analysis of six phthalate esters in hydroalcoholic beverages (alcohol by volume, alc vol−1, ≤40%). Under optimal conditions, the enrichment factor of the six analytes ranges from 220- to 300-fold and the recovery from 85% to 100.5%. The limit of detection (LOD) and limit of quantification (LOQ) are ≥0.022 μg L−1 and ≥0.075 μg L−1, respectively. Intra-day and inter-day precisions expressed as relative standard deviation (RSD), are ≤8.2% and ≤7.0%, respectively. The whole proposed methodology has demonstrated to be simple, reproducible and sensible for the determination of trace phthalate esters in red and white wine samples. 相似文献
15.
Y. Nonaka K. Saito N. Hanioka S. Narimatsu H. Kataoka 《Journal of chromatography. A》2009,1216(20):4416-4422
A simple and sensitive automated method for determination of aflatoxins (B1, B2, G1, and G2) in nuts, cereals, dried fruits, and spices was developed consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–mass spectrometry (LC–MS). Aflatoxins were separated within 8 min by high-performance liquid chromatography using a Zorbax Eclipse XDB-C8 column with methanol/acetonitrile (60/40, v/v): 5 mM ammonium formate (45:55) as the mobile phase. Electrospray ionization conditions in the positive ion mode were optimized for MS detection of aflatoxins. The pseudo-molecular ions [M+H]+ were used to detect aflatoxins in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample using a Supel-Q PLOT capillary column as an extraction device. The extracted aflatoxins were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC–MS with SIM method, good linearity of the calibration curve (r > 0.9994) was obtained in the concentration range of 0.05–2.0 ng/mL using aflatoxin M1 as an internal standard, and the detection limits (S/N = 3) of aflatoxins were 2.1–2.8 pg/mL. The in-tube SPME method showed >23-fold higher sensitivity than the direct injection method (10 μL injection volume). The within-day and between-day precision (relative standard deviations) at the concentration of 1 ng/mL aflatoxin mixture were below 3.3% and 7.7% (n = 5), respectively. This method was applied successfully to analysis of food samples without interference peaks. The recoveries of aflatoxins spiked into nuts and cereals were >80%, and the relative standard deviations were <11.2%. Aflatoxins were detected at <10 ng/g in several commercial food samples. 相似文献
16.
Yu Liu Ercheng ZhaoWentao Zhu Haixiang GaoZhiqiang Zhou 《Journal of chromatography. A》2009,1216(6):885-891
A novel microextraction method termed ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) combining high-performance liquid chromatography with diode array detection (HPLC-DAD) was developed for the determination of insecticides in water samples. Four heterocyclic insecticides (fipronil, chlorfenapyr, buprofezin, and hexythiazox) were selected as the model compounds for validating this new method. This technique combines extraction and concentration of the analytes into one step, and the ionic liquid was used instead of a volatile organic solvent as the extraction solvent. Several important parameters influencing the IL-DLLME extraction efficiency such as the volume of extraction solvent, the type and volume of disperser solvent, extraction time, centrifugation time, salt effect as well as acid addition were investigated. Under the optimized conditions, good enrichment factors (209–276) and accepted recoveries (79–110%) were obtained for the extraction of the target analytes in water samples. The calibration curves were linear with correlation coefficient ranged from 0.9947 to 0.9973 in the concentration level of 2–100 μg/L, and the relative standard deviations (RSDs, n = 5) were 4.5–10.7%. The limits of detection for the four insecticides were 0.53–1.28 μg/L at a signal-to-noise ratio (S/N) of 3. 相似文献
17.
Yu-Ying Chao Yi-Ming Tu Zhi-Xuan Jian Hsaio-Wen Wang Yeou-Lih Huang 《Journal of chromatography. A》2013,1271(1):41-49
In this study we on-line coupled hollow fiber liquid–liquid–liquid microextraction (HF-LLLME), assisted by an ultrasonic probe, with high-performance liquid chromatography (HPLC). In this approach, the target analytes – 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 2,6-dichlorophenol (2,6-DCP), and 3,4-dichlorophenol (3,4-DCP) – were extracted into a hollow fiber (HF) supported liquid membrane (SLM) and then back-extracted into the acceptor solution in the lumen of the HF. Next, the acceptor solution was withdrawn on-line into the HPLC sample loop connected to the HF and then injected directly into the HPLC system for analysis. We found that the chlorophenols (CPs) could diffuse quickly through two sequential extraction interfaces – the donor phase – SLM and the SLM – acceptor phase – under the assistance of an ultrasonic probe. Ultrasonication provided effective mixing of the extracted boundary layers with the bulk of the sample and it increased the driving forces for mass transfer, thereby enhancing the extraction kinetics and leading to rapid enrichment of the target analytes. We studied the effects of various parameters on the extraction efficiency, viz. the nature of the SLM and acceptor phase, the compositions of the donor and acceptor phases, the fiber length, the stirring rate, the ion strength, the sample temperature, the sonication conditions, and the perfusion flow rate. This on-line extraction method exhibited linearity (r2 ≥ 0.998), sensitivity (limits of detection: 0.03–0.05 μg L−1), and precision (RSD% ≤ 4.8), allowing the sensitive, simple, and rapid determination of CPs in aqueous solutions and water samples with a sampling time of just 2 min. 相似文献
18.
Wen-Lin Liu Yen-Chen Ko Bao-Huey Hwang Zu-Guang Li Thomas Ching-Cherng Yang Maw-Rong Lee 《Analytica chimica acta》2012
A novel technique for derivatization in a gas chromatograph injection port after a one-step extraction of trace perfluorocarboxylic acids (PFCAs) in water with ion pair formation during dispersive liquid–liquid microextraction (DLLME) was investigated. Tetrabutylammonium hydrogen sulfate (TBAHS) was used as the ion pair reagent. PFCA butyl ester derivatives were formed in the GC injection port and then analyzed using gas chromatography coupled to tandem mass spectrometry with negative chemical ionization. According to our analysis, the operative linear range for PFCA detection from 250 pg mL−1 to 2 μg mL−1 with a relative standard derivation (RSD) below 13%. Detection limits were achieved at the level of 37–51 pg mL−1. This method was successfully applied for the analyzing of PFCAs in river water samples from urban and industrial areas without tedious pretreatment. The concentration range over which PFCAs were detected is from 0.6 ng mL−1 to 604.9 ng mL−1. 相似文献
19.
Isuha Tarazona Alberto ChisvertZacarías León Amparo Salvador 《Journal of chromatography. A》2010,1217(29):4771-4778
A new analytical method for the determination of four hydroxylated benzophenone UV filters (i.e. 2-hydroxy-4-methoxybenzophenone (HMB), 2,4-dihydroxybenzophenone (DHB), 2,2′-dihydroxy-4-methoxybenzophenone (DHMB) and 2,3,4-trihydroxybenzophenone (THB)) in sea water samples is presented. The method is based on dispersive liquid–liquid microextraction (DLLME) followed by gas chromatography–mass spectrometry (GC–MS) determination. The variables involved in the DLLME process were studied. Under optimized conditions, 1000 μL of acetone (disperser solvent) containing 60 μL of chloroform (extraction solvent) were injected into 5 mL of aqueous sample adjusted to pH 4 and containing 10% NaCl. Before injecting into the GC–MS system, the DLLME extracts were evaporated under an air stream and then reconstituted with N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA), thus allowing the target analytes to be converted into their trimethylsilyl derivatives. The best conditions for the derivatization reaction were 75 °C and 30 min. High enrichment factors for all the target analytes (ranging from 58 to 64) and good repeatability (RSD around 6%) were obtained. The limits of detection were in the range of 32–50 ng L−1, depending on the analyte. The recoveries obtained by using the proposed DLLME–GC–MS method evidenced the presence of matrix effects for some of the target analytes, and thereby the standard addition calibration method was employed. Finally, the validated method was applied to the analysis of sea water samples. 相似文献
20.
A novel derivatization-ultrasonic assisted-dispersive liquid–liquid microextraction (UA-DLLME) method for the simultaneous determination of 11 main carbohydrates in tobacco has been developed. The combined method involves pressurized liquid extraction (PLE), derivatization, and UA-DLLME, followed by the analysis of the main carbohydrates with a gas chromatography-flame ionization detector (GC-FID). First, the PLE conditions were optimized using a univariate approach. Then, the derivatization methods were properly compared and optimized. The aldononitrile acetate method combined with the O-methoxyoxime-trimethylsilyl method was used for derivatization. Finally, the critical variables affecting the UA-DLLME extraction efficiency were searched using fractional factorial design (FFD) and further optimized using Doehlert design (DD) of the response surface methodology. The optimum conditions were found to be 44 μL for CHCl3, 2.3 mL for H2O, 11% w/v for NaCl, 5 min for the extraction time and 5 min for the centrifugation time. Under the optimized experimental conditions, the detection limit of the method (LODs) and linear correlation coefficient were found to be in the range of 0.06–0.90 μg mL−1 and 0.9987–0.9999. The proposed method was successfully employed to analyze three flue-cured tobacco cultivars, among which the main carbohydrate concentrations were found to be very different. 相似文献