首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A clearing assay for lipolytic enzymes has been realized in 96-well microtiter plates. A thin layer containing emulsified tributyrin as turbidity-generating substrate was placed on a thicker supporting aqueous layer. Both layers were stabilized by a gel-forming agent. Enzyme addition leads to clearing of the emulsion detected with a standard microtiter plate reader as a decrease of extinction. Dependencies of the signal kinetics on the substrate and enzyme concentrations were studied. For 0.5–1 % tributyrin content the reaction rate is not substrate-limited. An initial slope of the signal kinetics is proportional to the lipase activity. A detailed characterization of the assay was performed. Lipolysis of tributyrin was confirmed by glycerol detection. Various gel-forming agents were compared and diffusion conditions in these gels were analyzed. Agar and agarose were found to be the most suitable gel-forming agents, which do not affect enzyme diffusion whereas polyacrylamide gels block lipase diffusion and therefore are not suitable for the assay. The optimized assay prepared from 1 % tributyrin emulsion in 2 % agar gel was tested with six microbial lipases and porcine pancreatic lipase. The detection limit is 20–60 ng/well which is equivalent to 30 μU/well for T. lanuginosus lipase.
Figure
A clearing assay for lipolytic enzymes has been realized in 96-well microtiter plates. A thin layer containing emulsified tributyrin as turbidity-generating substrate was placed on a thicker supporting aqueous layer. Both layers are stabilized by a gel-forming agent. Enzyme addition leads to clearing of the emulsion detected with a standard microtiter plate reader as a decrease of extinction  相似文献   

2.
A novel oligonucleotide delivery system that is based on oligonucleotide–nanoparticle conjugates has been described. Installed oligonucleotides were modified with the carbohydrate at the 3′ terminus, accordingly, constructed nanoparticles display clustered carbohydrates on their outer layer for the targeted delivery of oligonucleotides. The method for the construction of ligand-functionalized nanoparticle was simple and reproducible. The stability of the nanoparticles displaying clustered carbohydrates greatly increased in serum compared to nanoparticles without carbohydrates. In order to investigate the targetability of oligonucleotide–nanoparticle conjugates into primary hepatic parenchymal cells, freshly isolated rat hepatocytes were incubated with nanoparticles and the amount of internalized gold nanoparticles was evaluated by an inductively coupled plasma mass spectroscopy analysis. Nanoparticles displaying clustered carbohydrates internalized more efficiently than nanoparticles without carbohydrate modifications. In particular, the cellular uptakes of oligonucleotide-conjugated gold nanoparticle increased 1.7 ~2.0-fold by galactose modification. Competition assay revealed that clustered galactose enhanced the internalization of the nanoparticle into primary hepatic parenchymal cells by a receptor-mediated process.
Figure
A novel oligonucleotide delivery system that is based on oligonucleotide-nanoparticle conjugates has been described. Constructed nanoparticles display clustered carbohydrates on their outer layer. The stability of the nanoparticles displaying clustered carbohydrates increased in serum, and clustered galactose enhanced the internalization of the nanoparticle to hepatic parenchymal cells by a receptor-mediated process  相似文献   

3.
We report on an investigation of the optical properties of gold nanoparticles assembled as thin films of different thickness. The nanoparticles were linked to the surface of a gold chip by dithiol reagents and studied by surface plasmon resonance (SPR) spectroscopy and atomic force microscopy. There is good correlation between the experimental findings and theoretical simulation, and the respective data reveal the presence of ordered nanostructures in the assemblies. The shift in the SPR angle is linearly dependent on the particle size and the ratio of the different particles. SPR spectroscopy also reveals important information in terms of the optical constants of such films. This shall be further applied to in-situ quality control in the fabrication of optoelectronic, solar cell and semiconductor devices.
Figure
SPR angle shifts according to the immobilization of gold nanoparticles with different size on BDMT SAM  相似文献   

4.
Cysteine and thioglycolic acid were immobilized on gold nanoparticles via established thiolgold surface chemistry. It is found that calcium ions rapidly induce the aggregation of the functional gold nanoparticles due to the complexation of Ca(II) by immobilized cysteine. It was also found that triethanolamine enhances the effect of calcium ions by decreasing the electrostatic repulsion between the gold nanoparticles. Transmission electron microscopy, electrophoresis, zeta potential measurements and absorptiometry were used to investigate the mechanism. Under the optimum experimental condition, the cysteine/thioglycolate/triethanolamine-modified nanoparticles were highly sensitive (the detection limit being 0.3 ??M) and selective towards calcium and magnesium ions, with a linear detection range between 1.0 ??M and 14 ??M. Based on these findings, a rapid and selective colorimetric method was developed for assaying Ca(II) ions in serum.
Figure
It was found that triethanolamine could be immobilize on the surface of GNPs by electrostatic adsorption with TGA and neutralize the negative charge of TGA, furthermore reduce the electrostatic repulsion and decrease the interparticle distance between aggregated GNPs (as showed in Scheme 1). These results indicated that TGA and cysteine could be successfully immobilized on the surface of the GNPs to improve the stability of the as-prepared functional GNPs for sensing Ca2+ ion  相似文献   

5.
We show that the antigen CFP-10 (found in tissue fluids of tuberculosis patients) can be used as a marker protein in a surface-plasmon resonance (SPR) based method for early and simplified diagnosis of tuberculosis. A sandwich SPR immunosensor was constructed by immobilizing the CFP-10 antibody on a self-assembled monolayer on a gold surface, this followed by blocking it with bovine serum albumin. Following exposure of the sensor surface to a sample containing CFP-10, secondary antibody immobilized on nickel oxide nanoparticles are injected which causes a large SPR signal change. The method has a dynamic range from 0.1 to around 150 ng per mL of CFP-10, and a detection limit as low as 0.1 ng per mL. This is assumed to be due to the high amplification power of the NiO nanoparticles.
Figure
Schematic diagram of sensor chip configuration (left) and SPR study based on amplification strategy with NiO nanoparticles (right).  相似文献   

6.
We describe a sensitive chronocoulometric biosensor for the sequence-specific detection of DNA. It is based on a glassy carbon electrode modified with multi-walled carbon nanotubes, polydopamine, and gold nanoparticles. The ruthenium(III)hexammine complex acts as the electrochemical indicator. Electrochemical impedance spectra and scanning electron microscopy are employed to investigate the assembly of the electrode surface. The signals of the ruthenium complex electrostatically bound to the anionic phospho groups of the DNA strands are measured by chronocoulometry before and after hybridization. The difference in signal intensity is linearly related to the logarithm of the concentration of the target DNA in the range of 1.0 nM to 10 fM with a detection limit of 3.5fM (S/N?=?3) under optimal conditions. This biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of complementary target DNA in human serum sample with satisfactory results.
Figure
We describe a sensitive chronocoulometric biosensor based on a glassy carbon electrode modified with gold nanoparticles, poly(dopamine), and carbon nanotubes. The biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of Helicobacter pylori in human serum with a satisfactory result.  相似文献   

7.
We describe a method for the synthesis of gold nanoparticles in a stainless steel continuous flow tubular reactor using tetrachloroauric acid as a precursor but without using a classical reducing agent. Gold(III) ion is reduced by stainless steel to form gold nanoparticles which are collected at the end of the coil. A single-phase system is introduced that generates dispersed nanoparticles in the absence of reducing agents on their surface. By controlling flow rates and temperature, the size of the nanoparticles can be tuned in the range from 24 nm to 36 nm. The reproducibility of the preparation was investigated, relative standard deviation of both the wavelength of the peak and the intensity of the plasmonic absorption band were determined and found to vary by 0.15 % and 6.5 %, respectively. Flow synthesis is found to be an excellent alternative to chemical methods to produce stable gold nanoparticles of varying size in an efficiently way. The particles obtained also perform very well when used as a substrate in surface enhanced Raman scattering as shown by the characterization of carboxylated single walled carbon nanotubes.
Figure
Bare gold nanoparticles have been synthesized in a single-phase stainless steel continuous flow tubular reactor using tetrachloroauric acid as a precursor  相似文献   

8.
The modification of electrodes with gold nanoparticles results in an increased electrode surface area, enhanced mass transport, and improved catalytic properties. We have extended this approach to indium tin oxide (ITO) electrodes to obtain optically transparent gold nanorod-modified electrodes which display enhanced electrochemical capabilities and have the additional advantage of showing a tunable surface plasmon resonance. The procedures for attaining high surface coverage (15 gold nanorods per square µm) of such electrodes were optimized, and the potential-dependent surface plasmon resonance was studied under controlled electrical potential. In an exemplary sensor application, we demonstrate the detection of mercury via potential-dependent formation of an Au-Hg amalgam.
Immobilization of gold nanorods on optically transparent ITO electrodes provides tunable surface plasmon resonance detection coupled with electrochemical potential control. These novel sensors are applied to the detection and quantification of mercury with a combined SPR-electrochemical technique  相似文献   

9.
Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18?% and 5?%, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies.
Figure
Schematic diagram of Ab-Ag interaction on MNPs confined Au surface (left) and SPR study on the immunoactivity of BSA adsorbed on MNPs (right).  相似文献   

10.
The use of nanoparticles (NPs) can substantially improve the analytical performance of surface plasmon resonance imaging (SPRi) in general, and in DNA sensing in particular. In this work, we report on the modification of the gold surface of commercial biochips with gold nanospheres, silica-coated gold nanoshells, and silver nanoprisms, respectively. The NPs were tethered onto the surface of the chip and functionalized with a DNA probe. The effects of tethering conditions and varying nanostructures on the SPRi signals were evaluated via hybridization assays. The results showed that coupling between planar surface plasmons and electric fields, generated by localized surface plasmons of the NPs, is mandatory for signal enhancement. Silver nanoprisms gave the best results in improving the signal change at a target DNA concentration of <50 nM by +50 % (compared to a conventional SPRi chip). The limit of detection for the target DNA was 0.5 nM which is 5 times less than in conventional SPRi.
Figure
?  相似文献   

11.
A nanocomposite film is described that is composed of alternating layers of poly(diallydimethyl ammonium chloride) and gold nanoparticles that interact through electrostatic forces. The films of varying thickness were prepared by the layer-by-layer technique, and Au-NPs were generated by electrochemical reduction of hexachloroauric acid. The composite films were characterized by UV?Cvis spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. Most nanocomposite films exhibit linear, uniform, and regular layer-by-layer growth during the process of formation. The films exhibit unique performance in terms of surface enhanced Raman scattering and electrocatalytic activitiy towards the oxidation of ascorbic acid.
Figure
A nanocomposite film was prepared by alternating layers of poly(diallydimethyl ammonium chloride) and gold nanoparticles, in which Au-NPs were generated by electrochemical reduction of hexachloroauric acid. The films exhibit unique performance in terms of surface enhanced Raman scattering and electrocatalytic activitiy towards the oxidation of ascorbic acid.  相似文献   

12.
We describe a simple, green and controllable approach for electrochemical synthesis of a nanocomposite made up from electrochemically reduced graphene oxide (ERGO) and gold nanoparticles. This material possesses the specific features of both gold nanoparticles and graphene. Its morphology was characterized by scanning electron microscopy which reveals a homogeneous distribution of gold nanoparticles on the graphene sheets. Cyclic voltammetry was used to evaluate the electrochemical properties of this nanocomposite towards dopamine by modification of it on surface of glassy carbon electrode (GCE). Compared to the bare GCE, the electrode modified with gold nanoparticles, and the electrode modified with ERGO, the one modified with the nanocomposite displays better electrocatalytic activity. Its oxidation peak current is linearly proportional to the concentration of dopamine (DA) in the range from 0.1 to 10?μM, with a detection limit of 0.04?μM (at S/N?=?3). The modified electrode also displays good storage stability, reproducibility, and selectivity.
Figure
Electrochemical reduced graphene oxide (ERGO) before and after electrochemical deposition of Au nanoparticles. Au nanoparticles with diameters of about 40–50?nm integrate uniformly with the ERGO. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear range, excellent selectivity and sensitivity to DA.  相似文献   

13.
We report on the amperometric determination of sulfite using screen-printed carbon electrodes (SPCEs) modified with gold and silver nanoparticles that were deposited on the electrode to improve the capabilities of detection. The electrode is fairly selective and responds to sulfite with an oxidation current (at 300 mV and pH 6) in the 9.80 to 83.33 μM concentration range. The precision in terms of repeatability and reproducibility is 14.4 % and 10.7 % in the case of SPCEs modified by gold nanoparticles. The method was applied to the determination of sulfite in drinking water, pickle juice and vinegar. Recoveries ranged from 96 % to 104 %.
Figure
Amperometric determination of sulfite using a sensor based on the immobilization gold nanoparticles on a disposable screen-printed carbon electrode  相似文献   

14.
We have developed an enzymatic glucose biosensor that is based on a flat platinum electrode which was covered with electrophoretically deposited rhodium (Rh) nanoparticles and then sintered to form a large surface area. The biosensor was obtained by depositing glucose oxidase (GOx), Nafion, and gold nanoparticles (AuNPs) on the Rh electrode. The electrical potential and the fractions of Nafion and GOx were optimized. The resulting biosensor has a very high sensitivity (68.1 μA mM?1 cm?2) and good linearity in the range from 0.05 to 15 mM (r?=?0.989). The limit of detection is as low as 0.03 mM (at an SNR of 3). The glucose biosensor also is quite selective and is not interfered by electroactive substances including ascorbic acid, uric acid and acetaminophen. The lifespan is up to 90 days. It was applied to the determination of glucose in blood serum, and the results compare very well with those obtained with a clinical analyzer.
Figure
An enzymatic glucose biosensor was prepared based on rhodium nanoparticle modified Pt electrode and glucose oxidase immobilized in gold nanoparticles and Nafion composite film. The electrode showed a good response to glucose. The sensor was applied to the determination of glucose in blood serum.  相似文献   

15.
Xiaoyu Cao 《Mikrochimica acta》2014,181(9-10):1133-1141
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe ssDNA on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. A thiol-tagged DNA strand coupled to horseradish peroxidase conjugated to AuNP served as a tracer. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. Hybridization with the target DNA was studied by measuring the electrochemical signal response of horseradish peroxidase using differential pulse voltammetry. The calibration plot is linear in the 5.0?×?10?14 and 5.0?×?10?9 M concentration range, and the limit of detection is 2.2?×?10?15 M. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA. The approach is deemed to provide a sensitive and reliable tool for highly specific detection of DNA.
Figure
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe (ssDNA) on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA  相似文献   

16.
Gold electrodes were modified with self assembled layers (SAMs) composed of mercaptopropionic acid, thiodipropionic acid, dithiodipropionic acid, cysteamine and gold nanoparticles and used to study the electrooxidation of dopamine (DA) in solution at pH 7. SAMs endowed with gold nanoparticles gave the highest catalytic effect. The results showed that such electrodes are capable of resolving the oxidation peaks of DA, ascorbic acid, and uric acid which is most favourable with respect to the detection of DA in physiological matrices.
Figure
Gold electrodes modified with S-containing compound and gold nanoparticles were used for determination of dopamine in aqueous solution. The modified electrodes could clearly resolve the oxidation peaks of dopamine, ascorbic acid and uric acid with peak-to-peak separation enabling determination of these compounds in the presence of each other.  相似文献   

17.
We report on a novel method for visual detection silver(I) ion. It is based on the finding that Ag(I) ions are rapidly reduced by hydroquinone to form a shell of silver on the surface of gold nanoparticles (AuNPs) which act as catalysts for this reaction. This leads to a color change from red to yellow which can be seen with bare eyes. This scheme is sensitive and highly specific for Ag(I) ions. The detection limits are 5 μM for visual inspection and 1 μM for photometric readout, respectively. The method was successfully applied to the determination of Ag(I) ions in spiked lake water and soil.
A novel visual detection method based on the catalysis of gold nanoparticles was developed for the determination of Ag+ in the lake water and soil.  相似文献   

18.
A disposable electrochemical myeloperoxidase (MPO) immunosensor was fabricated based on the indium tin oxide electrode modified with a film composed of gold nanoparticles (AuNPs), poly(o-phenylenediamine), multi-walled carbon nanotubes and an ionic liquid. The composite film on the surface of the electrode was prepared by in situ electropolymerization using the ionic liquid as a supporting electrolyte. Negatively charged AuNPs were then adsorbed on the modified electrode via amine-gold affinity and to immobilize MPO antibody. Finally, bovine serum albumin was employed to block possible remaining active sites on the AuNPs. The modification of the electrode was studied by cyclic voltammetry and scanning electron microscopy. The factors affecting the performance of the immunosensor were investigated in detail using the hexacyanoferrate redox system. The sensor exhibited good response to MPO over two linear ranges (from 0.2 to 23.4 and from 23.4 to 300 ng.mL?1), with a detection limit of 0.05 ng.mL?1 (at an S/N of 3).
Figure
A disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film composed of gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes.  相似文献   

19.
We report on a highly sensitive chemiluminescent (CL) biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticles that were covered with a dendrimer. The modified probe is composed of gold nanoparticles, a dendrimer, the CL reagent, and the DNA. The capture probe DNA was immobilized on magnetic beads covered with gold. It first hybridizes with the target DNA and then with one terminal end of the signal DNA on the barcoded DNA probe. CL was generated by adding H2O2 and Co(II) ions as the catalyst. The immobilization of dendrimer onto the gold nanoparticles can significantly enhance sensitivity and gives a detection limit of 6 fmol L-1 of target DNA.
Graphical Abstract
A sensitive chemiluminescent biosensor for the sequenc-specific detection of DNA using a novel bio barcode DNA probe modified with gold nanoparticle that were covered with a dendrimer was reported. The immobilization of dendrimer onto the gold nanoparticles enhances sensitivity and gives a detection limit of 6 fM of target DNA.  相似文献   

20.
We describe a new method for the visualization of the activity of red-ox proteins on a gold interface. Glucose oxidase was selected as a model system. Surfaces were modified by adhesion of glucose oxidase on (a) electrochemically cleaned gold; (b) gold films modified with gold nanoparticles, (c) a gold surface modified with self-assembled monolayer, and (d) covalent immobilization of protein on the gold surface modified with a self-assembled monolayer. The simple optical method for the visualization of enzyme on the surfaces is based on the enzymatic formation of polypyrrole. The activity of the enzyme was quantified via enzymatic formation of polypyrrole, which was detected and investigated by quartz microbalance and amperometric techniques. The experimental data suggest that the enzymatic formation of the polymer may serve as a method to indicate the adhesion of active redox enzyme on such surfaces.
Figure
An optical method for the evaluation of activity and distribution of glucose oxidase on the different surfaces was described. The enzymatic synthesis of polypyrrole (black colour) was successfully applied for the visualization of active enzyme on the surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号