首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
 We describe an efficient implementation of an interior-point algorithm for non-convex problems that uses directions of negative curvature. These directions should ensure convergence to second-order KKT points and improve the computational efficiency of the procedure. Some relevant aspects of the implementation are the strategy to combine a direction of negative curvature and a modified Newton direction, and the conditions to ensure feasibility of the iterates with respect to the simple bounds. The use of multivariate barrier and penalty parameters is also discussed, as well as the update rules for these parameters. We analyze the convergence of the procedure; both the linesearch and the update rule for the barrier parameter behave appropriately. As the main goal of the paper is the practical usage of negative curvature, a set of numerical results on small test problems is presented. Based on these results, the relevance of using directions of negative curvature is discussed. Received: July 2000 / Accepted: October 2002 Published online: December 19, 2002 Key words. Primal-dual methods – Nonconvex optimization – Linesearches Research supported by Spanish MEC grant BEC2000-0167 Mathematics Subject Classification (1991): 49M37, 65K05, 90C30  相似文献   

2.
 In this paper, we survey the most recent methods that have been developed for the solution of semidefinite programs. We first concentrate on the methods that have been primarily motivated by the interior point (IP) algorithms for linear programming, putting special emphasis in the class of primal-dual path-following algorithms. We also survey methods that have been developed for solving large-scale SDP problems. These include first-order nonlinear programming (NLP) methods and more specialized path-following IP methods which use the (preconditioned) conjugate gradient or residual scheme to compute the Newton direction and the notion of matrix completion to exploit data sparsity. Received: December 16, 2002 / Accepted: May 5, 2003 Published online: May 28, 2003 Key words. semidefinite programming – interior-point methods – polynomial complexity – path-following methods – primal-dual methods – nonlinear programming – Newton method – first-order methods – bundle method – matrix completion The author's research presented in this survey article has been supported in part by NSF through grants INT-9600343, INT-9910084, CCR-9700448, CCR-9902010, CCR-0203113 and ONR through grants N00014-93-1-0234, N00014-94-1-0340 and N00014-03-1-0401. Mathematics Subject Classification (2000): 65K05, 90C06, 90C22, 90C25, 90C30, 90C51  相似文献   

3.
 In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a conversion of a given sparse SDP having a large scale positive semidefinite matrix variable into an SDP having multiple but smaller positive semidefinite matrix variables. The other is by incorporating a positive definite matrix completion itself in a primal-dual interior-point method. The current article presents the details of their implementations. We introduce new techniques to deal with the sparsity through a clique tree in the former method and through new computational formulae in the latter one. Numerical results over different classes of SDPs show that these methods can be very efficient for some problems. Received: March 18, 2001 / Accepted: May 31, 2001 Published online: October 9, 2002 RID="⋆" ID="⋆"The author was supported by The Ministry of Education, Culture, Sports, Science and Technology of Japan. Key Words. semidefinite programming – primal-dual interior-point method – matrix completion problem – clique tree – numerical results Mathematics Subject Classification (2000): 90C22, 90C51, 05C50, 05C05  相似文献   

4.
 We consider optimality systems of Karush-Kuhn-Tucker (KKT) type, which arise, for example, as primal-dual conditions characterizing solutions of optimization problems or variational inequalities. In particular, we discuss error bounds and Newton-type methods for such systems. An exhaustive comparison of various regularity conditions which arise in this context is given. We obtain a new error bound under an assumption which we show to be strictly weaker than assumptions previously used for KKT systems, such as quasi-regularity or semistability (equivalently, the R 0-property). Error bounds are useful, among other things, for identifying active constraints and developing efficient local algorithms. We propose a family of local Newton-type algorithms. This family contains some known active-set Newton methods, as well as some new methods. Regularity conditions required for local superlinear convergence compare favorably with convergence conditions of nonsmooth Newton methods and sequential quadratic programming methods. Received: December 10, 2001 / Accepted: July 28, 2002 Published online: February 14, 2003 Key words. KKT system – regularity – error bound – active constraints – Newton method Mathematics Subject Classification (1991): 90C30, 65K05  相似文献   

5.
 Recently, interior-point algorithms have been applied to nonlinear and nonconvex optimization. Most of these algorithms are either primal-dual path-following or affine-scaling in nature, and some of them are conjectured to converge to a local minimum. We give several examples to show that this may be untrue and we suggest some strategies for overcoming this difficulty. Received: June 26, 2000 / Accepted: April 2002 Published online: September 5, 2002 Key words. Nonconvex quadratic optimization – local minimum – interior-point algorithms – trust region – branch-and-cut This research is supported by the National Science Foundation Grant CCR-9731273 and DMS-9703490.  相似文献   

6.
 Based on the work of the Nesterov and Todd on self-scaled cones an implementation of a primal-dual interior-point method for solving large-scale sparse conic quadratic optimization problems is presented. The main features of the implementation are it is based on a homogeneous and self-dual model, it handles rotated quadratic cones directly, it employs a Mehrotra type predictor-corrector extension and sparse linear algebra to improve the computational efficiency. Finally, the implementation exploits fixed variables which naturally occurs in many conic quadratic optimization problems. This is a novel feature for our implementation. Computational results are also presented to document that the implementation can solve very large problems robustly and efficiently. Received: November 18, 2000 / Accepted: January 18, 2001 Published online: September 27, 2002 Key Words. conic optimization – interior-point methods – large-scale implementation  相似文献   

7.
Solving semidefinite-quadratic-linear programs using SDPT3   总被引:3,自引:1,他引:2  
 This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primal-dual path-following algorithms. The software developed by the authors uses Mehrotra-type predictor-corrector variants of interior-point methods and two types of search directions: the HKM and NT directions. A discussion of implementation details is provided and computational results on problems from the SDPLIB and DIMACS Challenge collections are reported. Received: March 19, 2001 / Accepted: January 18, 2002 Published online: October 9, 2002 Mathematics Subject Classification (2000): 90C05, 90C22  相似文献   

8.
 Semismooth Newton methods constitute a major research area for solving mixed complementarity problems (MCPs). Early research on semismooth Newton methods is mainly on infeasible methods. However, some MCPs are not well defined outside the feasible region or the equivalent unconstrained reformulations of other MCPs contain local minimizers outside the feasible region. As both these problems could make the corresponding infeasible methods fail, more recent attention is on feasible methods. In this paper we propose a new feasible semismooth method for MCPs, in which the search direction asymptotically converges to the Newton direction. The new method overcomes the possible non-convergence of the projected semismooth Newton method, which is widely used in various numerical implementations, by minimizing a one-dimensional quadratic convex problem prior to doing (curved) line searches. As with other semismooth Newton methods, the proposed method only solves one linear system of equations at each iteration. The sparsity of the Jacobian of the reformulated system can be exploited, often reducing the size of the system that must be solved. The reason for this is that the projection onto the feasible set increases the likelihood of components of iterates being active. The global and superlinear/quadratic convergence of the proposed method is proved under mild conditions. Numerical results are reported on all problems from the MCPLIB collection [8]. Received: December 1999 / Accepted: March 2002 Published online: September 5, 2002 RID="★" ID="★" This work was supported in part by the Australian Research Council. Key Words. mixed complementarity problems – semismooth equations – projected Newton method – convergence AMS subject classifications. 90C33, 90C30, 65H10  相似文献   

9.
 In this paper, we describe how to reformulate a problem that has second-order cone and/or semidefiniteness constraints in order to solve it using a general-purpose interior-point algorithm for nonlinear programming. The resulting problems are smooth and convex, and numerical results from the DIMACS Implementation Challenge problems and SDPLib are provided. Received: March 10, 2001 / Accepted: January 18, 2002 Published online: September 27, 2002 Key Words. semidefinite programming – second-order cone programming – interior-point methods – nonlinear programming Mathematics Subject Classification (2000): 20E28, 20G40, 20C20  相似文献   

10.
One motivation for the standard primal-dual direction used in interior-point methods is that it can be obtained by solving a least-squares problem. In this paper, we propose a primal-dual interior-point method derived through a modified least-squares problem. The direction used is equivalent to the Newton direction for a weighted barrier function method with the weights determined by the current primal-dual iterate. We demonstrate that the Newton direction for the usual, unweighted barrier function method can be derived through a weighted modified least-squares problem. The algorithm requires a polynomial number of iterations. It enjoys quadratic convergence if the optimal vertex is nondegenerate.The research of the second author was supported in part by ONR Grants N00014-90-J-1714 and N00014-94-1-0391.  相似文献   

11.
Kernel functions play an important role in the design and analysis of primal-dual interior-point algorithms. They are not only used for determining the search directions but also for measuring the distance between the given iterate and the μ-center for the algorithms. In this paper we present a unified kernel function approach to primal-dual interior-point algorithms for convex quadratic semidefinite optimization based on the Nesterov and Todd symmetrization scheme. The iteration bounds for large- and small-update methods obtained are analogous to the linear optimization case. Moreover, this unifies the analysis for linear, convex quadratic and semidefinite optimizations.  相似文献   

12.
We introduce a framework in which updating rules for the barrier parameter in primal-dual interior-point methods become dynamic. The original primal-dual system is augmented to incorporate explicitly an updating function. A Newton step for the augmented system gives a primal-dual Newton step and also a step in the barrier parameter. Based on local information and a line search, the decrease of the barrier parameter is automatically adjusted. We analyze local convergence properties, report numerical experiments on a standard collection of nonlinear problems and compare our results to a state-of-the-art interior-point implementation. In many instances, the adaptive algorithm reduces the number of iterations and of function evaluations. Its design guarantees a better fit between the magnitudes of the primal-dual residual and of the barrier parameter along the iterations.  相似文献   

13.
 There recently has been much interest in non-interior continuation/smoothing methods for solving linear/nonlinear complementarity problems. We describe extensions of such methods to complementarity problems defined over the cone of block-diagonal symmetric positive semidefinite real matrices. These extensions involve the Chen-Mangasarian class of smoothing functions and the smoothed Fischer-Burmeister function. Issues such as existence of Newton directions, boundedness of iterates, global convergence, and local superlinear convergence will be studied. Preliminary numerical experience on semidefinite linear programs is also reported. Received: October 1999 / Accepted: April 2002 Published online: December 19, 2002 RID="⋆" ID="⋆" This research is supported by National Science Foundation Grant CCR-9731273. Key words. semidefinite complementarity problem – smoothing function – non-interior continuation – global convergence – local superlinear convergence  相似文献   

14.
Global and local convergence properties of a primal-dual interior-point pure potential-reduction algorithm for linear programming problems is analyzed. This algorithm is a primal-dual variant of the Iri-Imai method and uses modified Newton search directions to minimize the Tanabe-Todd-Ye (TTY) potential function. A polynomial time complexity for the method is demonstrated. Furthermore, this method is shown to have a unique accumulation point even for degenerate problems and to have Q-quadratic convergence to this point by an appropriate choice of the step-sizes. This is, to the best of our knowledge, the first superlinear convergence result on degenerate linear programs for primal-dual interior-point algorithms that do not follow the central path. Received: February 12, 1998 / Accepted: March 3, 2000?Published online January 17, 2001  相似文献   

15.
Recently, Roos (SIAM J Optim 16(4):1110–1136, 2006) presented a primal-dual infeasible interior-point algorithm that uses full-Newton steps and whose iteration bound coincides with the best known bound for infeasible interior-point algorithms. In the current paper we use a different feasibility step such that the definition of the feasibility step in Mansouri and Roos (Optim Methods Softw 22(3):519–530, 2007) is a special case of our definition, and show that the same result on the order of iteration complexity can be obtained.   相似文献   

16.
 We consider a quadratic cut method based on analytic centers for two cases of convex quadratic feasibility problems. In the first case, the convex set is defined by a finite yet large number, N, of convex quadratic inequalities. We extend quadratic cut algorithm of Luo and Sun [3] for solving such problems by placing or translating the quadratic cuts directly through the current approximate center. We show that, in terms of total number of addition and translation of cuts, our algorithm has the same polynomial worst case complexity as theirs [3]. However, the total number of steps, where steps consist of (damped) Newton steps, function evaluations and arithmetic operations, required to update from one approximate center to another is , where ε is the radius of the largest ball contained in the feasible set. In the second case, the convex set is defined by an infinite number of certain strongly convex quadratic inequalities. We adapt the same quadratic cut method for the first case to the second one. We show that in this case the quadratic cut algorithm is a fully polynomial approximation scheme. Furthermore, we show that, at each iteration, k, the total number steps (as described above) required to update from one approximate center to another is at most , with ε as defined above. Received: April 2000 / Accepted: June 2002 Published online: September 5, 2002 Key words. convex quadratic feasibility problem – interior-point methods – analytic center – quadratic cuts – potential function  相似文献   

17.
 The authors of this paper recently introduced a transformation [4] that converts a class of semidefinite programs (SDPs) into nonlinear optimization problems free of matrix-valued constraints and variables. This transformation enables the application of nonlinear optimization techniques to the solution of certain SDPs that are too large for conventional interior-point methods to handle efficiently. Based on the transformation, we proposed a globally convergent, first-order (i.e., gradient-based) log-barrier algorithm for solving a class of linear SDPs. In this paper, we discuss an efficient implementation of the proposed algorithm and report computational results on semidefinite relaxations of three types of combinatorial optimization problems. Our results demonstrate that the proposed algorithm is indeed capable of solving large-scale SDPs and is particularly effective for problems with a large number of constraints. Received: June 22, 2001 / Accepted: January 20, 2002 Published online: December 9, 2002 RID="†" ID="†"Computational results reported in this paper were obtained on an SGI Origin2000 computer at Rice University acquired in part with support from NSF Grant DMS-9872009. RID="⋆" ID="⋆"This author was supported in part by NSF Grants CCR-9902010, INT-9910084 and CCR-0203426 RID="⋆⋆" ID="⋆⋆"This author was supported in part by NSF Grants CCR-9902010, INT-9910084 and CCR-0203113 RID="⋆⋆⋆" ID="⋆⋆⋆"This author was supported in part by DOE Grant DE-FG03-97ER25331, DOE/LANL Contract 03891-99-23 and NSF Grant DMS-9973339. Key Words. semidefinite program – semidefinite relaxation – nonlinear programming – interior-point methods – limited memory quasi-Newton methods. Mathematics Subject Classification (1991): 90C06, 90C27, 90C30.  相似文献   

18.
Interior–point algorithms are among the most efficient techniques for solving complementarity problems. In this paper, a procedure for globalizing interior–point algorithms by using the maximum stepsize is introduced. The algorithm combines exact or inexact interior–point and projected–gradient search techniques and employs a line–search procedure for the natural merit function associated with the complementarity problem. For linear problems, the maximum stepsize is shown to be acceptable if the Newton interior–point search direction is employed. Complementarity and optimization problems are discussed, for which the algorithm is able to process by either finding a solution or showing that no solution exists. A modification of the algorithm for dealing with infeasible linear complementarity problems is introduced which, in practice, employs only interior–point search directions. Computational experiments on the solution of complementarity problems and convex programming problems by the new algorithm are included.  相似文献   

19.
We propose a new truncated Newton method for large scale unconstrained optimization, where a Conjugate Gradient (CG)-based technique is adopted to solve Newton’s equation. In the current iteration, the Krylov method computes a pair of search directions: the first approximates the Newton step of the quadratic convex model, while the second is a suitable negative curvature direction. A test based on the quadratic model of the objective function is used to select the most promising between the two search directions. Both the latter selection rule and the CG stopping criterion for approximately solving Newton’s equation, strongly rely on conjugacy conditions. An appropriate linesearch technique is adopted for each search direction: a nonmonotone stabilization is used with the approximate Newton step, while an Armijo type linesearch is used for the negative curvature direction. The proposed algorithm is both globally and superlinearly convergent to stationary points satisfying second order necessary conditions. We carry out a significant numerical experience in order to test our proposal.  相似文献   

20.
In this paper we study primal-dual path-following algorithms for the second-order cone programming (SOCP) based on a family of directions that is a natural extension of the Monteiro-Zhang (MZ) family for semidefinite programming. We show that the polynomial iteration-complexity bounds of two well-known algorithms for linear programming, namely the short-step path-following algorithm of Kojima et al. and Monteiro and Adler, and the predictor-corrector algorithm of Mizuno et al., carry over to the context of SOCP, that is they have an O( logε-1) iteration-complexity to reduce the duality gap by a factor of ε, where n is the number of second-order cones. Since the MZ-type family studied in this paper includes an analogue of the Alizadeh, Haeberly and Overton pure Newton direction, we establish for the first time the polynomial convergence of primal-dual algorithms for SOCP based on this search direction. Received: June 5, 1998 / Accepted: September 8, 1999?Published online April 20, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号