首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The development of new catalytic methods to functionalize carbon-hydrogen (C-H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C-H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C-H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C-H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts (110 references).  相似文献   

2.
The borylation of alkanes and arenes has become some of the most practical C-H bond functionalization chemistry. Most striking is the high regioselectivity of these reactions. Rhodium and ruthenium complexes catalyze with exquisite selectivity the borylation of methyl C-H bonds over methylene or methine C-H bonds. Iridium complexes catalyze, with high steric control, the borylation of one aromatic C-H bond over another. In contrast, iridium-catalyzed borylation of heteroaromatic C-H bonds is more controlled by electronic effects. Detailed information on these selectivities and mechanistic information on the origins of this regioselectivity will be described in this critical review (95 references).  相似文献   

3.
In the past decade,transition-metal-catalyzed C–H functionalization by weak coordination has emerged as a practical and powerful tool to access many valuable chemicals.Two classes of weakly coordinating directing groups,commonly occurring functional groups,and easily removable auxiliaries,have been found to be efficient and practical for C–H activation reactions.This mini-review contains examples of recent research advances on transition-metal-catalyzed SP2 C–H functionalization via weak coordination,using Ru,Rh,and Pd.A number of weakly coordinating functional groups(e.g.,ketone,ester,carbamate,tertiary amide,ether,thioether,alcohol,and some others)are covered.As the field of transition-metal-catalyzed C–H functionalization continues to develop and more synthetically useful chemo-,regio-,and enantioselective reactions catalyzed by transition metal via weak coordination are discovered,this promising and attractive strategy will play a more important role in modern organic synthesis.  相似文献   

4.
Functionalizing traditionally inert carbon-hydrogen bonds represents a powerful transformation in organic synthesis, providing new entries to valuable structural motifs and improving the overall synthetic efficiency. C-H bond activation, however, often necessitates harsh reaction conditions that result in functional group incompatibilities and limited substrate scope. An understanding of the reaction mechanism and rational design of experimental conditions have led to significant improvement in both selectivity and applicability. This critical review summarizes and discusses endeavours towards the development of mild C-H activation methods and wishes to trigger more research towards this goal. In addition, we examine select examples in complex natural product synthesis to demonstrate the synthetic utility of mild C-H functionalization (84 references).  相似文献   

5.
6.
The key platinum mediated C-H bond activation and functionalization steps in the synthesis of (-)-rhazinilam (Johnson, J. A.; Li, N.; Sames, D. J. Am. Chem. Soc. 2002, 124, 6900) were investigated using the M06 and B3LYP density functional approximation methods. This computational study reveals that ethyl group dehydrogenation begins with activation of a primary C-H bond in preference to a secondary C-H bond in an insertion/methane elimination pathway. The C-H activation step is found to be reversible while the methane elimination (reductive elimination) transition state controls rate and diastereoselectivity. The chiral oxazolinyl ligand induces ethyl group selectivity through stabilizing weak interactions between its phenyl group (or cyclohexyl group) and the carboxylate group. After C-H activation and methane elimination steps, Pt-C bond functionalization occurs through β-hydride elimination to give the alkene platinum hydride complex.  相似文献   

7.
A strategy for the construction of unsymmetrical cyclobutanes using C-H functionalization logic is demonstrated in the total synthesis of piperarborenine B and piperarborenine D (reported structure). These syntheses feature a new preparation of cis-cyclobutane dicarboxylates from commercially available coumalate starting materials and a divergent approach to the controlled cis or trans installation of the two distinct aryl rings found in the natural products using the first example of cyclobutane C-H arylation. The structure of piperarborenine D is reassigned to a head-to-head dimer, which was synthesized using an intramolecular [2+2] photocycloaddition strategy.  相似文献   

8.
BJ Li  ZJ Shi 《Chemical Society reviews》2012,41(17):5588-5598
In this tutorial review, we will summarize our recent efforts in transition metal-catalyzed oxidative coupling via C-H functionalization of aromatic, benzylic and allylic C-H bonds. Related works from other laboratories will be cited where suitable, aiming to give the readers a flavor of this field. Special emphasis is placed on the reaction design and development.  相似文献   

9.
张谦  余彦葶  李家乐  李栋 《化学通报》2020,83(7):615-620
喹啉是一类重要的杂环化合物,喹啉类化合物的合成方法研究备受关注。通过喹啉的碳-氢键直接官能化反应制备取代喹啉类衍生物是一种简便而有效的方法。然而,喹啉的C5位选择性碳-氢键官能化反应仍然存在挑战,目前大多在过渡金属催化下实现,无过渡金属条件下的反应亟待开发。本文按成键类型(碳-卤键、碳-氮键、碳-氧键、碳-硫键和碳-碳键)分类综述了近年来在无过渡金属条件下喹啉C5位碳-氢键官能化反应的研究进展,并对该领域的研究现状及所存在的问题进行了总结。  相似文献   

10.
The total synthesis of (+)-lithospermic acid is described. The efficient synthesis features an asymmetric alkylation via C-H bond activation to assemble the dihydrobenzofuran core of the natural product. This was accomplished via a chiral imine-directed C-H bond functionalization and represents the first application of this C-H activation method to natural product synthesis. Furthermore, a challenging deprotection of a late-stage permethylated lithospermic acid was achieved.  相似文献   

11.
During the last two decades there has been considerable growth in the development of catalytic reactions capable of activating unreactive C-H bonds. These methods allow for the synthesis of complex molecules from easily available and cheaper precursors in a fewer number of steps. Naturally, the development of C-H activation methods for direct functionalization of heterocyclic molecules, invaluable building blocks for pharmaceutical and synthetic chemistry and material science, has received substantial attention as well. This critical review summarizes the progress made in this field until November 2006 (117 references).  相似文献   

12.
Tang S  Peng P  Wang ZQ  Tang BX  Deng CL  Li JH  Zhong P  Wang NX 《Organic letters》2008,10(9):1875-1878
A novel palladium-catalyzed oxidative C-H functionalization protocol for the synthesis of (2-oxoindolin-3-ylidene)methyl acetates has been developed. In the presence of Pd(OAc)2 and PhI(OAc)2, a variety of N-arylpropiolamides underwent the C-H functionalization reaction with acids to afford the corresponding (E)-(2-oxoindolin-3-ylidene)methyl acetates selectively in moderate to excellent yields.  相似文献   

13.
Guin S  Ghosh T  Rout SK  Banerjee A  Patel BK 《Organic letters》2011,13(22):5976-5979
A direct access to symmetrical and unsymmetrical 2,5-disubstituted [1,3,4]-oxadiazoles has been accomplished through an imine C-H functionalization of N-arylidenearoylhydrazide using a catalytic quantity of Cu(OTf)(2). This is the first example of amidic oxygen functioning as a nucleophile in a Cu-catalyzed oxidative coupling of an imine C-H bond. These reactions can be performed in air atmosphere and moisture making it exceptionally practical for application in organic synthesis.  相似文献   

14.
Activation of sp(3) C-H bonds adjacent to nitrogen in heterocycles is an attractive transformation that is emerging as a practical method in organic synthesis. This tutorial review aims to summarize the key examples of direct functionalization of nitrogen-containing heterocycles via metal-mediated and metal-catalyzed processes, which is meant to serve as a foundation for future investigations into this rapidly developing area of research. The review covers functionalization of N-heterocycles via alpha-lithiation with alkyllithium/diamine complexes, alpha-amino radical formation, metal-catalyzed direct C-H activation, C-H oxidations and oxidative couplings, and metal-catalyzed carbene insertions.  相似文献   

15.
An inexpensive cationic ruthenium(II) catalyst enabled the expedient synthesis of isocoumarins through oxidative annulations of alkynes by benzoic acids. This C-H/O-H bond functionalization process also proved applicable to the preparation of α-pyrones and was shown to proceed by rate-limiting C-H bond ruthenation.  相似文献   

16.
17.
A Pd-catalyzed asymmetric synthesis of Si-stereogenic dibenzosiloles is developed through enantioselective C-H bond functionalization of prochiral 2-(arylsilyl)aryl triflates. High chemo- and enantioselectivities are achieved by employing a Josiphos-type ligand under mild conditions.  相似文献   

18.
The invention of a method for the synthesis of 1,3-diols from the corresponding alcohols is described, via controlled, radical-mediated C-H functionalization. The sequence described herein entails near quantitative conversion to the corresponding trifluoroethyl carbamate, followed by a variant of the Hofmann-L?ffler-Freytag reaction, cyclization, and hydrolysis to provide the 1,3-diols. In addition to the 10 examples presented herein, the syntheses of four natural products are facilitated by this directed oxyfunctionalization. This methodology is demonstrated to be orthogonal to other known C-H oxidations. Finally, this sequence is efficient, practical, inexpensive, and scalable.  相似文献   

19.
Kumar A  Gupta G  Srivastava S 《Organic letters》2011,13(24):6366-6369
An efficient and conceptually different approach toward C-H bond activation by using iodine mediated sp(3) C-H functionalization for the synthesis of alkyl azaarene pyridinium zwitterions is described. This work has the interesting distinction of being the first synthesis of a new class of alkyl azaarene pyridinium zwitterion via transition-metal-free sp(3) C-H bond activation of an alkyl azaarene.  相似文献   

20.
Palladium-catalyzed allylic C-H silylation was performed with use of hexamethyldisilane as the silyl source. These C-H functionalization reactions occur only in the presence of hypervalent iodine reagents or other strong oxidants and proceed with excellent regioselectivity, providing the linear allylic isomer of the allylsilane products. In demonstrating the first oxidative allylic C-H silylation of alkenes, this study marks an important advance for the catalytic C-H functionalization method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号