首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative in situ infrared spectroscopy in combination with kinetic analysis is utilized to derive mechanistic aspects for the reaction of methanol with ammonia on Brønsted acidic mordenite. Under non-reactive conditions, a coadsorption complex between methanol and ammonia is found, in which only ammonia is in direct interaction with the Brønsted acid sites of the zeolite. This complex is proposed to be the precursor for the formation of protonated methylamines in the zeolite pores which are formed in sequential order up to tetramethylammonium ions. These methylamines are unable to desorb under reaction conditions in the absence of ammonia. They leave the surface either by ammonia adsorption assisted desorption or by scavenging of methyl groups from protonated methylamines by ammonia. Both steps are concluded to be potentially rate determining.  相似文献   

2.
The nature of catalytic Brønsted sites in mazzite is clarified by molecular modeling combined with spectroscopy. Density Functional Theory study for periodic models of high-silica mazzite evidence that most stable bridging hydroxyls, noticeably binding CO probe, fall into two categories: Brønsted sites located in larger channels, characterized by higher OH frequency of bare hydroxyl with very large redshift upon CO interaction, and lower-frequency sites located in smaller channels, showing lower redshift. This fully corresponds to two bands obtained for OH stretch in IR spectra. Very good agreement between theory and experiment found in this work not only confirms that Brønsted sites studied here belong to the strongest acid sites among known zeolites but also clarifies their identity in mazzite. Location of sites with exceptionally large red shift upon CO adsorption at 12-T wide channel very well conforms to both intuitive expectations and predictions for other zeolites from former studies.  相似文献   

3.
A detailed FTIR study of the effects of steaming and acid leaching on protonated Y faujasite (FAU) and EMT zeolites is provided and the results are thoroughly analysed. In particular, emphasis is placed on the Brønsted acidic evolution and acidic strength measurements for a large series of as‐modified zeolites using CO as a sensitive probe to distinguish various protonic sites. While an increase of acidity for framework OH groups is observed during the strengthening of dealumination for both FAU and EMT series, the steaming process also generates a large variety of additional Brønsted acidic groups. Regarding acidic strength, these heterogeneous OH groups are sensitive to post‐treatments and their existence strongly depends on the initial composition of the zeolites. The presence of residual Na+ cations in the starting materials induces dramatic Brønsted acidic changes after steaming. As a result, steamed zeolites that initially contain traces of sodium possess unusual acidic Brønsted groups with low acidity. This result contradicts the trend generally observed with framework OH groups, for which steaming results in an increase of Brønsted acidic strength. The study reveals that the situation is indeed more complex, as some compositions and post‐treatments strongly influence the Brønsted acidity of as‐steamed zeolites both in their nature and their corresponding acidic strength. By linking these IR‐compiled features to the as‐exposed modifications, a large acidity scale better suited to characterizing catalysts having Brønsted acidity expanding from lowest to highest strength is proposed.  相似文献   

4.
Metal-reinforced sulfonic-acid-modified zirconia catalysts were successfully prepared and used to remove trace olefins from aromatics in a fixed-bed reactor. Catalysts were characterized by ICP-OES, N2 adsorption–desorption, X-ray diffraction, thermogravimetric analysis (TGA), and pyridine-FTIR spectroscopy. Different metals and calcination temperatures had great influence on the catalytic activity. Alumina-reinforced sulfated zirconia exhibited outstanding catalytic performance, stable regeneration activity, and giant surface area, and are promising in industrial catalysis. TGA showed that the decomposition of methyl could be attributed to Brønsted acid sites, and pyridine-FTIR spectroscopy proved the weak Brønsted sites on these synthesized metal-reinforced sulfated zirconia. Also, a relation between the reaction rate and weak Brønsted acid density is proposed.  相似文献   

5.
Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by 17O DNP surface‐enhanced NMR spectroscopy (SENS). We additionally show that the O−H bond length in these catalysts can be measured with sub‐picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. Experiments performed on materials impregnated with pyridine also allow for the direct detection of intermolecular hydrogen bonding interactions through the lengthening of O−H bonds.  相似文献   

6.
As it is well known, Brønsted acid sites in 8-MR of H-MOR (mordenite) are selective for dimethyl ether (DME) carbonylation to methyl acetate, whereas those in 12-MR are more prone to methanol to olefin reaction. Interestingly, we observed that the Brønsted acid sites in 12-MR of H-MOR are highly active for dimethoxymethane (DMM) carbonylation to methyl methoxyacetate (MMAc), whereas those in 8-MR led to the formation of DME. A series of modified H-MOR catalysts with accurate regulation of Brønsted acid sites in 12-MR or 8-MR were successfully synthesized by selective Na+ exchange or pyridine (Py) adsorption. Fourier-transform infrared (FT-IR) spectra, NH3-temperature-programmed desorption, Py-FT-IR, and inductively coupled plasma analyses suggested that Na+ first occupied Brønsted acid sites in 8-MR and then replaced those in 12-MR. All Na+-exchanged catalysts exhibited significant acceleration on MMAc selectivity, and the ratio of Brønsted acid amount in 12-MR/total had a positive correlation with MMAc selectivity. The MMAc selectivity (78%) of H-MOR-0.15Na was nearly 2.5 times more than that of untreated H-MOR (31%). However, H-MOR-Py showed almost no carbonylation activity (<1% MMAc) and a highest DME selectivity (98%), indicating that Brønsted acid sites in 12-MR were the only active sites for DMM carbonylation, whereas those in 8-MR tended to accelerate DMM disproportionation to DME.  相似文献   

7.
Asymmetric hydrogenation plays an important role in organic synthesis, but that of the challenging substrates such as N‐unprotected imines, enamines, and N‐heteroaromatic compounds (1H‐indoles, 1H‐pyrroles, pyridines, quinolines, and quinoxalines) has only received increased attention in the past three years. Considering the interaction modes of a Brønsted acid with a Lewis base, Brønsted acids may be used as the ideal activators of C?N bonds. This Minireview summarizes the recent advances in transition‐metal‐catalyzed, Brønsted acid activated asymmetric hydrogenation of these challenging substrates, thus offering a promising substrate activation strategy for transformations involving C?N bonds.  相似文献   

8.
We outline two methodologies to selectively characterize the Brønsted acidity of the external surface of FAU-type zeolites by IR and NMR spectroscopy of adsorbed basic probe molecules. The challenge and goal are to develop reliable and quantitative IR and NMR methodologies to investigate the accessibility of acidic sites in the large pore FAU-type zeolite Y and its mesoporous derivatives often referred to as ultra-stable Y (USY). The accessibility of their Brønsted acid sites to probe molecules (n-alkylamines, n-alkylpyridines, n-alkylphosphine- and phenylphosphine-oxides) of different molecular sizes is quantitatively monitored either by IR or 31P NMR spectroscopy. It is now possible, for the first time to quantitatively discriminate between the Brønsted acidity located in the microporosity and on the external surface of large pore zeolites. For instance, the number of external acid sites on a Y (LZY-64) zeolite represents 2 % of its total acid sites while that of a USY (CBV760) represents 4 % while the latter has a much lower framework Si/Al ratio.  相似文献   

9.
《中国化学》2017,35(10):1529-1539
A series of mesoporous Nb and Nb‐W oxides were employed as highly active solid acid catalysts for the conversion of glucose to 5‐hydroxymethylfurfural (HMF ). The results of solid state 31P MAS NMR spectroscopy with adsorbed trimethylphosphine as probe molecule show that the addition of W in niobium oxide increases the number of Brønsted acid sites and decreases the number of Lewis acid sites. The catalytic performance for Nb‐W oxides varied with the ratio of Brønsted to Lewis acid sites and high glucose conversion was observed over Nb5W5 and Nb7W3 oxides with high ratios of Brønsted to Lewis acid sites. All Nb‐W oxides show a relatively high selectivity of HMF , whereas no HMF forms over sulfuric acid due to its pure Brønsted acidity. The results indicate fast isomerization of glucose to fructose over Lewis acid sites followed by dehydration of fructose to HMF over Brønsted acid sites. Moreover, comparing to the reaction occurred in aqueous media, the 2‐butanol/H2O system enhances the HMF selectivity and stabilizes the activity of the catalysts which gives the highest HMF selectivity of 52% over Nb7W3 oxide. The 2‐butanol/H2O catalytic system can also be employed in conversion of sucrose, achieving HMF selectivity of 46% over Nb5W5 oxide.  相似文献   

10.
Thermally stable Brønsted acid sites were generated on alumina‐supported niobium oxide (Nb2O5/Al2O3) by calcination at high temperatures, such as 1123 K. The results of structural characterization by using Fourier‐transform infrared (FTIR) spectroscopy, TEM, scanning transmission electron microscopy (STEM), and energy‐dispersive X‐ray (EDX) analysis indicated that the Nb2O5 monolayer domains were highly dispersed over alumina at low Nb2O5 loadings, such as 5 wt %, and no Brønsted acid sites were presents. The coverage of Nb2O5 monolayer domains over Al2O3 increased with increasing Nb2O5 loading and almost‐full coverage was obtained at a loading of 16 wt %. A sharp increase in the number of hydroxy groups, which acted as Brønsted acid sites, was observed at this loading level. The relationship between the acidic properties and the structure of the material suggested that the bridging hydroxy groups (Nb? O(H)? Nb), which were formed at the boundaries between the domains of the Nb2O5 monolayer, acted as thermally stable Brønsted acid sites.  相似文献   

11.
Heterogeneous Brønsted acid catalysts are tremendously important in industry, particularly in catalytic cracking processes. Here we show that these Brønsted acid sites can be directly observed at natural abundance by 17O DNP surface-enhanced NMR spectroscopy (SENS). We additionally show that the O−H bond length in these catalysts can be measured with sub-picometer precision, to enable a direct structural gauge of the lability of protons in a given material, which is correlated with the pH of the zero point of charge of the material. Experiments performed on materials impregnated with pyridine also allow for the direct detection of intermolecular hydrogen bonding interactions through the lengthening of O−H bonds.  相似文献   

12.
There were investigated aluminosilicate MCM-41 samples in the as-prepared form and those modified by the deposition of carbonaceous compounds during conversion of cyclohexene for 12 h. The amount of the deposits decreased with the rising reaction temperature and increased with the Al content of the samples. The cyclohexene conversion followed mainly two mechanisms: cyclohexene skeletal isomerization and hydrogen transfer. The products with 6 carbon atoms in a molecule prevailed in all cases. The process of conversion, proceeding on the Brønsted acid sites, resulted in formation of both coke deposits and volatile products. The creation of coke caused a decrease in the effective concentration of both the Brønsted and the Lewis acid sites. Thermodesorption of pyridine showed that (i) the concentration of these sites before and after the conversion differed only slightly and (ii) the acidic strength of the Brønsted sites was practically independent of their concentration and the sample Si/Al ratio. The chemical composition of the deposits was insignificantly affected by the Al content of the materials and depended mostly on the temperature and duration of the reaction. At relatively low temperatures, both aliphatic and aromatic compounds were formed, being rather weakly bound to the surface of the material. After a longer (55 h) reaction period, some deposits appeared that were strongly bound to the surface. Isotherms of adsorption of water, benzene, and nitrogen were determined, from which a mechanism of this process was derived. It included most probably multilayer adsorption at lower relative pressures, followed by capillary condensation. The sorption capacities of the uncoked samples for benzene and nitrogen were relatively high and independent of the sample Al content. In the case of water, however, an observed reduction in the sorption capacity with the increasing Al content suggested that clusters of the adsorbed molecules formed around the Al centers and caused partial clogging of the material pores. The deposited coke strongly decreased both the surface area and the sorption capacity of the materials.  相似文献   

13.
Supercritical drying of alginate gels is an efficient way to prepare aerogels with high surface area (>300 m2 · g−1). FTIR spectroscopy allows to monitor the adsorption of NH3 from the gas phase onto the acid sites of the alginate. Free carboxylic groups are effective Brønsted sites, whereas the divalent cations used in the ionotropic gelation present the properties of Lewis sites. The ratio between Brønsted and Lewis sites provides infomation on the role of pH in alginate gelation and suggests that non-buffered gelation by transition-metal cations is a mixed ionotropic-acid process.  相似文献   

14.
Results of multinuclear MAS NMR spectroscopy are reported for poly (ε‐caprolactone)/maghnite nanocomposite formation, with ε‐caprolactone in situ polymerized in the presence of maghnite, a proton exchanged montmorillonite clay. Exfoliated and intercalated materials with different maghnite loading in the range 3–15 wt % were investigated. 1H NMR evidences Brønsted acid hydroxyl groups in the silicate layers and shows that their broad signal at 7.6 ppm present in the parent clay disappears in the nanocomposite material. 27Al MAS NMR results show that beside the hexacoordinated aluminum signal, two additional peaks corresponding to two different tetrahedral Al sites are present in the clay framework. The NMR signal intensity of only one of them was found to be affected in the nanocomposites compared with the parent maghnite, suggesting that these specific aluminum sites are the reactive ones at the initial stages of the polymerization. However almost no changes occurred in the 29Si NMR spectra, confirming that the polymer grafting, as indicated earlier by atomic force microscopy, took place on the aluminum tetracoordinated sites rather than on the silicon sites. A mechanism of maghnite surface catalyzed polymerization of ε‐caprolactone was proposed, involving Brønsted and Lewis acid sites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3060–3068, 2007  相似文献   

15.
Vanadium‐containing saponite samples were synthesized in a one‐pot synthetic procedure with the aim of preparing samples for potential application as fillers for polymeric composites. These vanadium‐modified materials were prepared from an acid support by adopting a synthetic strategy that allowed us to introduce isolated structural V species (H/V‐SAP). The physicochemical properties of these materials were investigated by XRD analysis and by DR‐UV/Vis and FTIR spectroscopy of CO that was adsorbed at 100 K; these data were compared to those of a V‐modified saponite material that did not contain any Brønsted acid sites (Na/V‐SAP). The surface‐acid properties of both samples (together with the fully acidic H‐SAP material and the Na‐SAP solid) were studied in the catalytic isomerization of α‐pinene oxide. The V‐containing solids were tested in the oxidative dehydrogenation reaction of propene to evaluate their potential use as flame‐retardant fillers for polymer composites. The effect of tuning the presence of Lewis/Brønsted acid sites was carefully studied. The V‐containing saponite sample that contained a marked presence of Brønsted acid sites showed the most interesting performance in the oxidative dehydrogenation (ODH) reactions because they produced coke, even at 773 K. The catalytic data presented herein indicate that the H/V‐SAP material is potentially active as a flame‐retardant filler.  相似文献   

16.
Understanding the nature of active sites in metal‐supported catalysts is of great importance towards establishing their structure–property relationships. The outstanding catalytic performance of metal‐supported catalysts is frequently ascribed to the synergic effect of different active sites, which is however not well spectroscopically characterized. Herein, we report the direct detection of surface Zn species and 1H–67Zn internuclear interaction between Zn2+ ions and Brønsted acid sites on Zn‐modified ZSM‐5 zeolites by high‐field solid‐state NMR spectroscopy. The observed promotion of C?H bond activation of methane is rationalized by the enhanced Brønsted acidity generated by synergic effects arising from the spatial proximity/interaction between Zn2+ ions and Brønsted acidic protons. The concentration of synergic active sites is determined by 1H–67Zn double‐resonance solid‐state NMR spectroscopy.  相似文献   

17.
The presence of Fe‐bound cyanide ligands in the active site of the proton‐reducing enzymes [FeFe]‐hydrogenases has led to the hypothesis that such Brønsted–Lowry bases could be protonated during the catalytic cycle, thus implying that hydrogen isocyanide (HNC) might have a relevant role in such crucial microbial metabolic paths. We present a hybrid quantum mechanical/molecular mechanical (QM/MM) study of the energetics of CN? protonation in the enzyme, and of the effects that cyanide protonation can have on [FeFe]‐hydrogenase active sites. A detailed analysis of the electronic properties of the models and of the energy profile associated with H2 evolution clearly shows that such protonation is dysfunctional for the catalytic process. However, the inclusion of the protein matrix surrounding the active site in our QM/MM models allowed us to demonstrate that the amino acid environment was finely selected through evolution, specifically to lower the Brønsted–Lowry basicity of the cyanide ligands. In fact, the conserved hydrogen‐bonding network formed by these ligands and the neighboring amino acid residues is able to impede CN? protonation, as shown by the fact that the isocyanide forms of [FeFe]‐hydrogenases do not correspond to stationary points on the enzyme QM/MM potential‐energy surface.  相似文献   

18.
"Designer acids": combined acid catalysis for asymmetric synthesis   总被引:1,自引:0,他引:1  
Lewis and Brønsted acids can be utilized as more‐effective tools for chemical reactions by sophisticated engineering (“designer acids”). The ultimate goal of such “designer acids” is to form a combination of acids with higher reactivity, selectivity, and versatility than the individual acid catalysts. One possible way to take advantage of such abilities may be to apply a “combined acids system” to the catalyst design. The concept of combined acids, which can be classified into Brønsted acid assisted Lewis acid (BLA), Lewis acid assisted Lewis acid (LLA), Lewis acid assisted Brønsted acid (LBA), and Brønsted acid assisted Brønsted acid (BBA), can be a particularly useful tool for the design of asymmetric catalysis, because combining such acids will bring out their inherent reactivity by associative interaction, and also provide more‐organized structures that allow an effective asymmetric environment.  相似文献   

19.
The acidic properties of the H-forms of zeolites ZSM-5, Beta, Y, and mordenite are studied by diffuse reflectance IR spectroscopy using n-pentane as a probe molecule. The decreasing order of Brønsted acid site strengths is constructed. The isopentane selectivity in n-pentane isomerization under supercritical conditions (260°C, 130 atm) increases in the order H-ZSM-5 < H-Beta < H-mordenite(11) ≈ H-Y with decreasing strength of Brønsted sites. Catalytic data are analyzed jointly with the results of physicochemical studies of H-mordenite (temperature-programmed ammonia desorption, benzene adsorption, and IR spectroscopy). Under the supercritical conditions, the conversion of n-pentane on mordenite is determined by the total acidity of the zeolite and also by the accessibility of the acid sites inside the zeolite channels to the reactant.  相似文献   

20.
The gas-phase carbonylation reaction of dimethoxymethane (DMM) to methyl methoxyacetate on different solid acids was studied. It was established that this reaction was accompanied by the occurrence of a side reaction of DMM disproportionation into dimethyl ether and methyl formate. It was shown that the activity of solid acids in both of the reactions depends on the strength of Brønsted acid sites according to an equation like the Brønsted–Evans–Polanyi–Semenov correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号