首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Chemphyschem》2003,4(3):268-275
A generic method is described for the reversible immobilization of polyhistidine‐bearing polypeptides and proteins on attenuated total reflecting (ATR) sensor surfaces for the detection of biomolecular interactions by FTIR spectroscopy. Nitrilotriacetic acid (NTA) groups are covalently attached to self‐assembled monolayers of either thioalkanes on gold films or mercaptosilanes on silicon dioxide films deposited on germanium internal reflection elements. Complex formation between Ni2+ ions and NTA groups activates the ATR sensor surface for the selective binding of polyhistidine sequences. This approach not only allows a stable and reversible immobilization of histidine‐tagged peptides (His–peptides) but also simultaneously allows the direct in situ quantification of surface‐adsorbed molecules from their specific FTIR spectral bands. The surface concentrations of both NTA and His–peptide on silanized surfaces were determined to be 1.1 and 0.4 molecules nm?2, respectively, which means that the surface is densely covered. A comparison of experimental FTIR spectra with simulated spectra reveals a surface‐enhancement effect of one order of magnitude for the gold surfaces. With the presented sensor surfaces, new ways are opened up to investigate, in situ and with high sensitivity and reproducibility, protein–ligand, protein–protein, protein–DNA interactions, and DNA hybridization by ATR–FTIR spectroscopy.  相似文献   

2.
Lassalle N  Roget A  Livache T  Mailley P  Vieil E 《Talanta》2001,55(5):993-1004
Conducting polymer films, such as polypyrrole, appear particularly attractive for the immobilisation of biological molecules by entrapment or covalent grafting. We describe here a new pyrrole phosphorarnidite building block allowing the synthesis of oligonucleotide (ODN) bearing a pyrrole moiety. The electropolymerisable pyrrole moiety was then introduced on the 5' end of the oligonucleotide. The electrosynthesis of a copolymer, from solutions containing pyrrole and pyrrole-ODN, gives in one step strongly adhesive films containing ODN probes at electrode surfaces. In this contribution, we have used such a methodology to verify its feasibility for the modification of quartz crystal microbalance (QCM) electrodes. The obtained biosensors enable the detection of DNA hybridisation in real time by micro-gravimetric transduction. Finally, as DNA targets were previously modified by biotin, we have used the affinity between biotin and avidin to validate the effectiveness of QCM transduction by fluorescence microscopy and to amplify the recorded micro-gravimetric signal.  相似文献   

3.
The orientation characteristics of pre-aligned liquid crystalline 5CB (4-n-pentyl-4′-cyanobiphenyl) in a germanium cell with unidirectional rubbed polyimide-coated surfaces have been investigated. Orientation of 5CB molecules near the polyimide surface and those representing average properties of the system (i.e., the bulk) are compared. The orientation of the bulk is monitored by transmission Fourier transform infrared (FT-IR) spectroscopy while that of the molecules next to the surface is observed via attenuated total reflection (ATR) FT-IR spectroscopy. There are significant differences in orientation characteristics between the two groups of molecules. For molecules near the polyimide surface, there is an observable difference in orientation of the soft and hard segments of the liquid crystalline. Moreover, they show depth dependent orientation.  相似文献   

4.
Using Cu(1)-catalyzed [3+2] Huisgen ‘click’ cycloaddition, a rigid rod - like oligo(p-phenylene vinylene) (OPV) was functionalized at both ends with biotin ligands, combining the valuable electro-optical properties of conjugated organic molecules with the biological recognition capability of biotin. Biotin can be placed at variable distances from the oligomer via appropriate length of a hydrophilic spacer, which also serves to regulate the binding capabilities of the two terminal biotin units. To demonstrate this binding potential, networks were formed with streptavidin-coated quantum dots. The synthetic conditions are presented, together with representative optimizations of the key reactions. The organic compounds were analyzed by means of ATR/FTIR, 1H NMR (200 or 600 MHz), 13C NMR, 2D NMR (HMBC, HMQC experiments), MS (ESI or MALDI-TOF), and optical spectroscopy. Networks were imaged with TEM.  相似文献   

5.
We have established an easy-to-use test system for detecting receptor-ligand interactions on the single molecule level using atomic force microscopy (AFM). For this, avidin-biotin, probably the best characterized receptor-ligand pair, was chosen. AFM sensors were prepared containing tethered biotin molecules at sufficiently low surface concentrations appropriate for single molecule studies. A biotin tether, consisting of a 6 nm poly(ethylene glycol) (PEG) chain and a functional succinimide group at the other end, was newly synthesized and covalently coupled to amine-functionalized AFM tips. In particular, PEG800 diamine was glutarylated, the mono-adduct NH2-PEG-COOH was isolated by ion exchange chromatography and reacted with biotin succinimidylester to give biotin-PEG-COOH which was then activated as N-hydroxysuccinimide (NHS) ester to give the biotin-PEG-NHS conjugate which was coupled to the aminofunctionalized AFM tip. The motional freedom provided by PEG allows for free rotation of the biotin molecule on the AFM sensor and for specific binding to avidin which had been adsorbed to mica surfaces via electrostatic interactions. Specific avidin-biotin recognition events were discriminated from nonspecific tip-mica adhesion by their typical unbinding force (∼40 pN at 1.4 nN/s loading rate), unbinding length (<13 nm), the characteristic nonlinear force-distance relation of the PEG linker, and by specific block with excess of free d-biotin. The convenience of the test system allowed to evaluate, and compare, different methods and conditions of tip aminofunctionalization with respect to specific binding and nonspecific adhesion. It is concluded that this system is well suited as calibration or start-up kit for single molecule recognition force microscopy.  相似文献   

6.
For a number of potential applications, it is desirable to immobilize avidin class molecules onto solid supports and exploit their ability to bind biotinylated molecules with high affinity. NeutrAvidin molecules were surface immobilized in various ways. In this study, NeutrAvidin was covalently attached by carbodiimide chemistry onto carboxyl groups of polyacrylic acid and carboxymethyl-dextran hydrogel interlayers. A third strategy involved the affinity "docking" of NeutrAvidin onto a biotinylated poly(ethylene glycol) interlayer. These three interlayers were selected for their low nonspecific binding of proteins, which was expected to minimize surface binding of NeutrAvidin by nonspecific interfacial adsorption. X-ray photoelectron spectroscopy (XPS) analyses allowed detailed characterization of the multilayer fabrication steps. An ELISA assay was used to measure NeutrAvidin activity, which varied with the surface immobilization route. Atomic force microcopy (AFM) force measurements showed that the hydrogel interlayer contributed to a repulsive force and verified the specific interaction between biotinylated AFM tips and the NeutrAvidin surfaces. When a solution of free biotin was injected into the AFM liquid cell, the force curve changed substantially and became identical to that recorded between surfaces carrying no NeutrAvidin, indicating that the free solution biotin had displaced NeutrAvidin proteins off the PEG-biotin layer.  相似文献   

7.
A chiral stationary phase derived from an L-RNA aptamer is evaluated for the enantiomer separation of a series of herbicide molecules (aryloxypropionic, aryloxyphenoxypropionic, and aminopropionic acid) by CEC after binding to biotin and grafting upon streptavidin-modified porous glass beads. We demonstrated that the aptamer capillary was stable in term of efficiency and retention during a long period. The influences of the mobile phase constitution and its flow-velocity on the enantioseparation were also investigated. The results suggest that the interactions of the enantiomer during CEC are solely based on chromatographic mechanisms and that the electrophoresis plays only a minor role. The separation efficiency and peak shape could be improved by Mg2+ divalent cation that stabilized the aptamer secondary structure and thus enhanced the mass transfer kinetics during the ligand-aptamer binding process. In addition, it was demonstrated that the determination of the enantiomerization barrier of flamprop was possible using this chiral stationary phase.  相似文献   

8.
Facile electrical communication between redox-active labeling molecules and electrode is essential in the electrochemical detection of bio-affinity reactions. In this report, nanometer-sized indium tin oxide (ITO) particles were employed in the fabrication of porous thick film electrodes to enhance the otherwise impeded electrochemical activity of redox labels in multi-layered protein films, and to enable quantitative detection of avidin/biotin binding interaction. To carry out the affinity reaction, avidin immobilized on an ITO electrode was reacted with mouse IgG labeled with both biotin and ruthenium Tris-(2,2′-bipyridine) (Ru-bipy). The binding reaction between avidin and biotin was detected by the catalytic voltammetry of Ru-bipy in an oxalate-containing electrolyte. On sputtered ITO thin film electrode, although a single layer of Ru-bipy labeled avidin exhibited substantial anodic current, attaching the label to the outer IgG layer of the avidin/biotin-IgG binding pair resulted in almost complete loss of the signal. However, electrochemical current was recovered on ITO film electrodes prepared from nanometer-sized particles. The surface of the nanoparticle structured electrode was found by scanning electron microscopy to be very porous, and had twice as much surface binding capacity for avidin as the sputtered electrode. The results were rationalized by the assumption of different packing density of avidin inner layer on the two surfaces, and consequently different electron transfer distance between the electrode and Ru-bipy on the IgG outer layer. A linear relationship between electrochemical current and IgG concentration was obtained in the range of 40-4000 nmol L−1 on the nanoparticle-based electrode. The approach can be employed in the electrochemical detection of immunoassays using non-enzymatic redox labels.  相似文献   

9.
Cell adhesion to a scaffold is a prerequisite for tissue engineering. Many studies have been focused on enhancing cell adhesion to synthetic materials that are used for scaffold fabrication. In this study, we applied an avidin-biotin binding system to enhance chondrocyte adhesion to biodegradable polymers. Biotin molecules were conjugated to the cell membrane of chondrocytes, and mediated cell adhesion to avidin-coated surfaces. We demonstrated that immobilization of biotin molecules to chondrocyte surfaces enhanced cell adhesion to avidin-coated biodegradable polymers such as poly(L-lactic acid), poly(D,L-lactic acid), and polycaprolactone, compared to the adhesion of normal chondrocytes to the same type of biodegradable polymer. The biotinylated chondrocytes still maintained their proliferation ability. This study showed the promise of applying the avidin-biotin system in cartilage tissue engineering. [diagram in text].  相似文献   

10.
The electrochemical reduction of phenylazide or phenylacetylene diazonium salts leads to the grafting of azido or ethynyl groups onto the surface of carbon electrodes. In the presence of copper(I) catalyst, these azide- or alkyne-modified surfaces react efficiently and rapidly with compounds bearing an acetylene or azide function, thus forming a covalent 1,2,3-triazole linkage by means of click chemistry. This was illustrated with the surface coupling of ferrocenes functionalized with an ethynyl or azido group and the biomolecule biotin terminated by an acetylene group.  相似文献   

11.
The interaction of avidin with biotin was studied on functionalized quartz surfaces terminated with 3-aminopropyltrimethoxysilane (3-APTMS), 2,2'-(ethylenedioxy)bis(ethylenediamine) (DADOO), and fourth-generation amine-terminated polyamidoamine (G4-NH2 PAMAM) dendrimers with the use of Fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS). In particular, the molecular recognition ability of these surfaces was quantified through FT-IRRAS in combination with the use of an alkyne dicobalt hexacarbonyl probe coupled with avidin. The degree of nonspecific adsorption of avidin was determined by exposure of the amine-terminated and/or biotinylated surfaces to solutions of biotin-saturated avidin. The results indicate that the biotinylated 3-APTMS layer exhibits a very low specific binding capacity for avidin (on the order of 0.15 pmol of avidin/cm2) and substantial nonspecific adsorption. Both the binding capacity and the specificity were greatly improved when the 3-APTMS layer on quartz was modified through serial chemisorption of glutaraldehyde (GA), DADOO, and/or G4-NH2 PAMAM dendrimer layers. Among these layers, the biotinylated G4-NH2 PAMAM dendrimer layer exhibited the highest capacity for avidin binding (2.02 pmol of avidin/cm2) with a specificity of approximately 90%. This effect can be attributed to the efficient packing/ordering of the binding dendrimer layer, leading to a more dense and better organized layer of biotin headgroups on the subsequent biotinylated surface.  相似文献   

12.
Surface-initiated grafting of N,N-dimethylacrylamide, styrenesulfonate (SS), and (ar-vinylbenzyl)trimethylammonium chloride (VBTAC) from microwave plasma carboxylated, initiator-functionalized poly(dimethylsiloxane) (PDMS) surfaces was accomplished utilizing reversible addition-fragmentation chain transfer (RAFT) polymerization. Surface spectroscopic attenuated total reflectance (ATR) FT-IR analysis and atomic force microscopy (AFM) measurements were utilized to determine surface grafting and morphological surface features. The VBTAC-grafted PDMS provided a smooth, hydrophilic cationic surface for creating layer-by-layer (LBL) surfaces via alternating deposition of well-defined poly(SS) and poly(VBTAC), also prepared via aqueous RAFT. Comparisons of the ATR FT-IR spectra of the LBL assemblies and those of respective anionic poly(SS) and cationic poly(VBTAC) components confirmed strong electrostatic complexation of a fraction of the sulfonate and quarternary ammonium species in the layers as well as the existence of noncomplexed species. AFM images of surface topology indicated the presence of domains, likely phase-separated segments of the respective homopolymers, as well as interlayer mixing. The employed LBL methodology results in formation of stable, highly hydrophilic surfaces on a PDMS substrate. To our knowledge, this is the first study that illustrates surface functionalization of PDMS using microwave plasma and RAFT polymerization, followed by LBL deposition of polyelectrolytes.  相似文献   

13.
Attenuated Total Reflectance (ATR) in the mid-infrared is employed to monitor the adsorption of poly(tert-butyl styrene - b - styrene sulfonate), PtBS-PSS, copolymers with a small hydrophobic head as well as of an analogous poly(styrene sulfonate), PSS, homopolymer on germanium and Au-plated germanium surfaces from aqueous NaCl solutions. The surface density of the adsorbed polyelectrolyte is monitored via the growth of characteristic infrared absorptions of the sulfonated ring at 1036- and 1008 cm−1 in the 2nd derivative mode. These probe bands do not exhibit shifts or changes in bandshape over very prolongued adsorption experiments. Pronounced differences in the kinetics of adsorption are observed between the PSS homopolymer and the PtBS-PSS copolymers in agreement to previous investigations by phase-modulated ellipsometry on similar systems. Adsorption of the diblocks above the critical micelle concentration is found to involve a sequence of diffusion, micellar relaxation and brush-limited processes.  相似文献   

14.
As part of our project of developing a new IR-based immunosensor, we investigated the functionalization of gold substrates with thin organic films containing biotin ligands. A two-step procedure was developed consisting of the chemisorption of short amine-terminated organosulfur compounds, followed by their reaction at the solid liquid interface with an activated ester derivative of biotin. Covalent binding of biotin to these attachment layers was assessed by Fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS) and X-ray photoelectron spectroscopy (XPS). The interaction of activated biotin with alcohol- and carboxylic acid-terminated monolayers was also investigated, and, as expected, no binding occurred. Moreover, mixed layers of short alcohol- and amine-terminated thiolates were successfully constructed at the gold surfaces and were shown to be the most efficient for the covalent binding of biotin thanks to the blocking effect of the thioalcohol, which prevented direct adsorption of biotin to the gold surface. Copyright 2001 Academic Press.  相似文献   

15.
The aim of this work was to create patterned surfaces for localized and specific biochemical recognition. For this purpose, we have developed a protocol for orthogonal and material-selective surface modifications of microfabricated patterned surfaces composed of SiO(2) areas (100 μm diameter) surrounded by Au. The SiO(2) spots were chemically modified by a sequence of reactions (silanization using an amine-terminated silane (APTES), followed by amine coupling of a biotin analogue and biospecific recognition) to achieve efficient immobilization of streptavidin in a functional form. The surrounding Au was rendered inert to protein adsorption by modification by HS(CH(2))(10)CONH(CH(2))(2)(OCH(2)CH(2))(7)OH (thiol-OEG). The surface modification protocol was developed by testing separately homogeneous SiO(2) and Au surfaces, to obtain the two following results: (i) SiO(2) surfaces which allowed the grafting of streptavidin, and subsequent immobilization of biotinylated antibodies, and (ii) Au surfaces showing almost no affinity for the same streptavidin and antibody solutions. The surface interactions were monitored by quartz crystal microbalance with dissipation monitoring (QCM-D), and chemical analyses were performed by polarization modulation-reflexion absorption infrared spectroscopy (PM-RAIRS) and X-ray photoelectron spectroscopy (XPS) to assess the validity of the initial orthogonal assembly of APTES and thiol-OEG. Eventually, microscopy imaging of the modified Au/SiO(2) patterned substrates validated the specific binding of streptavidin on the SiO(2)/APTES areas, as well as the subsequent binding of biotinylated anti-rIgG and further detection of fluorescent rIgG on the functionalized SiO(2) areas. These results demonstrate a successful protocol for the preparation of patterned biofunctional surfaces, based on microfabricated Au/SiO(2) templates and supported by careful surface analysis. The strong immobilization of the biomolecules resulting from the described protocol is advantageous in particular for micropatterned substrates for cell-surface interactions.  相似文献   

16.
The surface of low density polyethylene has been grafted with glycidyl acrylate and glycidyl methacrylate by photoinitiation. ESCA measurements on the grafted surface showed a 72% coverage for glycidyl acrylate and 52% for glycidyl methacrylate after 10 min of grafting with UV irradiation. ATR–IR showed a 10 times more extensive grafting for glycidyl acrylate than for glycidyl methacrylate after 10 min of grafting, indicating reaction to deeper layers. Acetone and ethanol were used as solvents: acetone yielded slightly more grafting at the surface. The grafted surfaces were reacted with 2M solutions of aniline and propylamine in ethanol. After 4 h reaction at 60°C, with aniline 52% of the epoxy groups while for propylamine 96% of the groups were consumed, as measured with ATR–IR.  相似文献   

17.
The interaction of avidin with biotin on a functional Au surface containing fourth generation amine-terminated polyamidoamine (G4-NH2 PAMAM) dendrimers was investigated through the use of Fourier transform infrared reflection–adsorption spectroscopy (FT-IRRAS). The first step in the fabrication of the functional surfaces used was the construction of an aldehyde-terminated self-assembled monolayer (SAM) through the treatment of Au-coated glass slides with ethanol solutions of self-synthesized 2-hydroxypentamethylene sulfide (HPMS). The as-formed aldehyde-terminated monolayer was subsequently immersed in methanol solutions of G4-NH2 PAMAM dendrimer to obtain well-organized primary amine-terminated surfaces. Biotinylation of the amine-terminated layers thus obtained was accomplished by use of the N-succinimidyl ester of biotin. Each step of the synthetic process, as well as the performance of final surface for protein recognition was monitored by FT-IRRAS. In particular, the molecular recognition ability was examined and quantified by use of an alkyne dicobalt hexacarbonyl probe coupled with avidin. Non-specific adsorption of avidin was determined by exposure of the amine-terminated and/or biotinylated surfaces to solutions of biotin-saturated avidin. The results indicate that the biotinylated G4-NH2 PAMAM dendrimer layers formed according to this procedure have a high capacity for binding avidin with relatively high specificity. The performance of these layers (i.e. both binding capacity and specificity) improve substantially when 6-mercapto-1-hexanol (MH) is present as a co-adsorbent during the formation of the initial aldehyde-terminated layers. This effect can be attributed to the dilution of the initial aldehyde-terminated SAM, leading to a more favorable spatial arrangement of the subsequent biotinylated surfaces.  相似文献   

18.
The surface grafting of multi-polymeric materials can be achieved by grafting as components such as polymers poly(N-isopropylacrylamide) and/or surfactant molecules (hexatrimethylammonium bromide, polyoxyethylene sorbitan monolaurate). The chosen grafting techniques, i.e. plasma activation followed by coating, allow a large spectrum of functional groups that can be inserted on the surface controlling the surface properties like adhesion, wettability and biocompatibility. The grafted polypropylene surfaces were characterized by contact angle analyses, XPS and AFM analyses. The influence of He plasma activation, of the coating parameters such as concentrations of the various reactive agents are discussed in terms of hydrophilic character, chemical composition and morphologic surface heterogeneity. The plasma pre-activation was shown inevitable for a permanent polymeric grafting. PNIPAM was grafted alone or with a mixture of the surfactant molecules. Depending on the individual proportion of each component, the grafted surfaces are shown homogeneous or composed of small domains of one component leading to a nano-structuration of the grafted surface.  相似文献   

19.
A practical and relatively simple method to identify molecularly imprinted polymers capable of binding proteins via the molecular tagging (epitope‐like) approach has been developed. In our two‐step method, we first challenge a previously obtained anti‐tag molecularly imprinted polymer with a small molecule including the said tag of choice (a biotin derivative as shown here or other) connected to a linker bound to a second biotin moiety. An avidin molecule partially decorated with fluorescent labels is then allowed to bind the available biotin derivative associated with the polymer matrix. At the end of this simple process, and after washing off all the low‐affinity binding molecules from the polymer matrix, only suitable molecularly imprinted polymers binding avidin through its previously acquired small molecule tag (or epitope‐like probe, in a general case) will remain fluorescent. For confirmation, we tested the selective performance of the anti‐biotin molecularly imprinted polymer binding it to biotinylated alkaline phosphatase. Residual chemical activity of the enzyme on the molecularly imprinted polymer solid support was observed. In all cases, the corresponding nonimprinted polymer controls were inactive.  相似文献   

20.
Self‐assembly of peptides and proteins is a key feature of biological functions. Short amphiphilic peptides designed with a β‐sheet structure can form sophisticated nanofiber structures, and the fibers are available as nanomaterials for arranging biomolecules. Peptide FI (H‐PKFKIIEFEP‐OH) self‐assembles into nanofibers with a coiled fine structure, as reported in our previous work. We have constructed anchor molecules that have both a binding moiety for the fiber structure and a functional unit capable of capturing target molecules, with the purpose of arranging proteins on the designed peptide nanofibers. Designed anchors containing an alkyl chain as a binding unit and biotin as a functional moiety were found to bind to peptide fibers FI and F2i (H‐ALEAKFAAFEAKLA‐NH2). The surface‐exposed biotin moiety on the fibers could capture an anti‐biotin antibody. Moreover, hydrophobic dipeptide anchor units composed of iminodiacetate connected to Phe–Phe or Ile–Ile and a peptide composed of six histidine residues connected to biotin could also connect FI peptide fibers to the anti‐biotin antibody through the chelation of Ni2+ ions. This strategy of using designed anchors opens a novel approach to constructing nanoscale protein arrays on peptide nanomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号