首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Although Raman spectra reveal, as a signature of double‐walled carbon nanotubes (DWCNTs), two radial breathing mode (RBM) lines associated with the inner and outer tubes, the specification of their nature as metallic or semiconducting remains a topic for debate. Investigating the spectral range of the RBM lines, we present a new procedure of the indexing of the semiconducting or metallic nature of the inner and outer shell that forms the DWCNT. The procedure exploits the difference between the intensities of recorded anti‐Stokes Raman spectrum and the anti‐Stokes spectrum calculated by applying the Boltzmann formulae to the recorded Stokes spectrum. The results indicate that the two spectra do not coincide with what should happen in a normal Raman process, namely, that there are RBM lines of the same intensity in both spectra, as well as RBM lines of higher intensity that are observed in the calculated spectrum. This discrepancy results from the surface‐enhanced Raman scattering mechanism that operates differently on metallic or semiconducting nanotubes. In this context, the analysis of the RBM spectrum can reveal pairs of lines associated with the inner/outer shell structure of DWCNT, and when the intensities between the recorded and calculated spectra coincide, the nanotube is metallic; otherwise, the nanotube is semiconducting. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This Letter reports the laser energy dependence of the Stokes and anti-Stokes Raman spectra of carbon nanotubes dispersed in aqueous solution and within solid bundles, in the energy range 1.52-2.71 eV. The electronic transition energies (E(ii)) and the radial breathing mode frequencies (omega(RBM)) are obtained for 46 different (18 metallic and 28 semiconducting) nanotubes, and the (n,m) assignment is discussed based on the observation of geometrical patterns for E(ii) versus omega(RBM) graphs. Only the low energy component of the E(M)(11) value is observed from each metallic nanotube. For a given nanotube, the resonant window is broadened and down-shifted for single wall carbon nanotube (SWNT) bundles compared to SWNTs in solution, while by increasing the temperature, the E(S)(22) energies are redshifted for S1 [(2n+m) mod 3=1] nanotubes and blueshifted for S2 [(2n+m) mod 3=2] nanotubes.  相似文献   

3.
In this work we performed the filling of single-walled carbon nanotube channels with metallic silver and copper by means of two-step synthesis including imbuing with metal nitrate aqueous solution and further annealing. It has been shown that metal insertion into the nanotube cavities results in the Fermi level upshift and the charge transfer from metal to carbon atoms, thus donor doping of single-walled carbon nanotubes takes place. At the same time, encapsulated silver has a larger donor effect on the carbon nanotubes that has been proved by Raman spectroscopy and X-ray photoelectron spectroscopy.  相似文献   

4.
A detailed theoretical study of the phonon and thermal properties of achiral single wall carbon nanotubes has been carried out using force constant model considering up to third nearest-neighbor interactions. We have calculated the phonon dispersions, density of states, radial breathing modes (RBM) and the specific heats for various zigzag and armchair nanotubes, with radii ranging from 2.8 Å to 11.0 Å. A comparative study of phonon spectrum with measured Raman data reveals that the number of Raman active modes for a tube does not depend on the number of atoms present in the unit cell but on its chirality. Calculated phonon modes at the zone center more or less accurately predicted the Raman active modes. The radial breathing mode is of particular interest as for a specific radius of a nanotube it is found to be independent of its chirality. We have also calculated the variation of RBM and G-band modes for tubes of different radii. RBM shows an inverse dependence on the radius of the tube. Finally, the values of specific heat are calculated for various nanotubes at room temperature and it was found that the specific heat shows an exponential dependence on the diameter of the tube.  相似文献   

5.
We show that the Raman scattering technique can give complete structural information for one-dimensional systems, such as carbon nanotubes. Resonant confocal micro-Raman spectroscopy of an (n,m) individual single-wall nanotube makes it possible to assign its chirality uniquely by measuring one radial breathing mode frequency omega(RBM) and using the theory of resonant transitions. A unique chirality assignment can be made for both metallic and semiconducting nanotubes of diameter d(t), using the parameters gamma(0) = 2.9 eV and omega(RBM) = 248/d(t). For example, the strong RBM intensity observed at 156 cm(-1) for 785 nm laser excitation is assigned to the (13,10) metallic chiral nanotube on a Si/SiO2 surface.  相似文献   

6.
张俊  谭平恒  赵伟杰 《物理学报》2010,59(11):7966-7973
提出一个根据拉曼基频模及其倍频模的斯托克斯和反斯托克斯拉曼成分的不同共振行为来探测样品与激光共振的系统能级的方法.此方法被应用到不均匀单壁碳纳米管束样品中某一径向呼吸模频率为219波数的金属型碳纳米管.通过分析呼吸模及其倍频模和切向模的共振行为,获得了该碳纳米管的电子跃迁能量,并获得纳米管C-C最近邻重叠积分因子为2.80 eV.此数值可以很好的解释单壁碳纳米管径向呼吸模的共振行为. 关键词: 单壁碳纳米管 呼吸模 共振拉曼散射 电子跃迁能  相似文献   

7.
The pressure dependence of shifts in the vibrational modes of individual carbon nanotubes is strongly affected by the nature of the pressure transmitting medium as a result of adsorption at the nanotube surface. The adsorbate is treated as an elastic shell which couples with the radial breathing mode (RBM) of the nanotube via van der Waal interactions. Using analytical methods as well as molecular simulation, we observe a low frequency breathing mode for the adsorbed fluid at approximately 50 cm-1, as well as diameter dependent upshifts in the RBM frequency with pressure, suggesting metallic nanotubes may wet more than semiconducting ones.  相似文献   

8.
The capability of anti‐Stokes/Stokes Raman spectroscopy to evaluate chemical interactions at the interface of a conducting polymer/carbon nanotubes is demonstrated. Electrochemical polymerisation of the monomer 3,4‐ethylenedioxythiophene (EDOT) on a Au support covered with a single‐walled carbon nanotube (SWNT) film immersed in a LiClO4/CH3CN solution was carried out. At the resonant optical excitation, which occurs when the energy of the exciting light coincides with the energy of an electronic transition, poly(3,4‐ethylenedioxythiophene) (PEDOT) deposited electrochemically as a thin film of nanometric thickness on a rough Au support presents an abnormally intense anti‐Stokes Raman spectrum. The additional increase in Raman intensity in the anti‐Stokes branch observed when PEDOT is deposited on SWNTs is interpreted as resulting from the excitation of plasmons in the metallic nanotubes. A covalent functionalisation of SWNTs with PEDOT both in un‐doped and doped states takes place when the electropolymerisation of EDOT, with stopping at +1.6 V versus Ag/Ag+, is performed on a SWNT film deposited on a Au plate. The presence of PEDOT covalently functionalised SWNTs is rationalised by (1) a downshift by a few wavenumbers of the polymer Raman line associated with the symmetric C C stretching mode and (2) an upshift of the radial breathing modes of SWNTs, both variations revealing an interaction between SWNTs and the conjugated polymer. Raman studies performed at different excitation wavelengths indicate that the resonant optical excitation is the key condition to observe the abnormal anti‐Stokes Raman effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The channels of single-walled carbon nanotubes (SWNTs) are filled with metallic silver. The synthesized nanocomposites are studied by Raman spectroscopy and optical absorption spectroscopy, and these data indicate a substantial modification of the electronic structure of the nanotubes upon their filling. Moreover, X-ray photoelectron spectroscopy shows that the incorporation of the metal leads to a change in the work function of SWNTs due to the Fermi level upshift and to the transfer of an electron density from inserted nanoparticles to the nanotube walls. Thus, the filling of the channels with silver results in donor doping of the nanotubes.  相似文献   

10.
The Raman spectra of single-walled carbon nanotubes at temperatures up to 730 K and pressures up to 7 GPa have been measured. The behavior of phonon modes and the interaction between nanotubes in bundles have been studied. It has been found that the temperature shift of the vibrational G mode is completely reversible, whereas the temperature shift of radial breathing modes is partially irreversible and the softening of the modes and narrowing of phonon bands are observed. The temperature shift and softening of radial breathing modes are also observed when samples are irradiated by laser radiation with a power density of 6.5 kW/mm2. The dependence of the relative frequency Ω/Ω0 for G + and G ? phonon modes on the relative change A 0/A in the triangular lattice constant of bundles of nanotubes calculated using the thermal expansion coefficient and compressibility coefficient of nanotube bundles shows that the temperature shift of the G mode is determined by the softening of the C-C bond in nanotubes. An increase in the equilibrium distances between nanotubes at the breaking of random covalent C-C bonds between nanotubes in bundles of nanotubes is in my opinion the main reason for the softening of the radial breathing modes.  相似文献   

11.
In this paper, exact formulas are obtained for the radial breathing mode (RBM) frequencies of triple-walled carbon nanotubes (TWCNTs) using symbolic package in MAPLE software. For this purpose, TWCNT is considered as triple concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard–Jones potential is used to calculate the vdW forces between adjacent tubes. Then, explicit formulas for RBM frequencies of single-walled (SW), and double-walled (DW) CNTs have been deduced from TWCNT formulas that show an excellent agreement with the available experimental results and the other theoretical model results. The advantage of this analytical approach is that the elastic shell model considers all degrees of freedom in the vibrational analysis of CNTs. To demonstrate the accuracy of this work, the RBM frequencies of different multi-walled carbon nanotubes (MWCNTs) are compared with the available experimental or atomistic results with relative errors of less than 1.5%. To illustrate the application of this approach, the diameters of DWCNTs are obtained from their RBM frequencies which show an excellent agreement with the available experimental results. Also, this approach can be used to determine the diameters of the TWCNTs and MWCNTs. The influence of changing the geometrical and mechanical parameters of a TWCNT on its RBM frequencies has been investigated, too.  相似文献   

12.
We present an investigation of the nature of single-walled carbon nanotubes (SWCNTs) in a bundle by resonant Raman spectroscopy. The calculation has been done for the three peak positions in radial breathing mode (RBM) spectra obtained by using a laser excitation wavelength (γ) of 633 nm from He-Ne laser on SWNT bundle sample prepared by chemical vapor deposition (CVD) technique using iron catalyst at 800°C. The detailed analysis in the present study is focused on peak positions 162 cm−1, 186 cm−1, and 216 cm−1. The firs step of the analysis is to construct a list of possible (n, m) pairs from the diameters calculated from the RBM peak positions. The parameters of SWNTs studied gives in-depth understanding of many symmetry, resonance and characteristic properties of SWNT bundles. Our results indicate that the contribution of metallic SWNTs in the bundle is small at RBM peak positions 162 cm−1, 186 cm−1 and in agreement with pervious results at peak position 216 cm−1.  相似文献   

13.
Directed assembly of single-walled carbon nanomaterials on to polymer surfaces has been achieved. The approach relies on selective interactions of the polymer functionalities with the surface structures present on the carbon materials. The successful immobilization of the carbon structures was confirmed by scanning electron microscopy, atomic force microscopy, and Raman spectroscopy. By generating patterned polymer surfaces with chemically distinct components through the control of polymer–polymer or polymer–substrate interactions, directed assembly of single-walled carbon nanohorns and single-walled nanotubes was demonstrated. This new type of carbon assembly might open up new avenues in the construction of functional polymer/carbon composites and flexible nanocarbon nano-electronics.  相似文献   

14.
The microwave irradiation effects on purified HiPCO and CoMoCat single-walled carbon nanotube (SWNT) thin films are investigated. The surface conductivities of the SWNT films are extracted from the measured THz transmission coefficients to provide a direct indication of the metallic content in the films. The observed drastic conductivity decrease indicates a significant metallic content reduction after the microwave irradiation. Two different laser excitations are applied for Raman spectroscopy to reveal the response of different nanotube species. The Raman spectra of both HiPCO and CoMoCat thin films confirm the decrease of metallic carbon nanotubes. The observed microwave-induced effects may potentially lead to a convenient scheme for demetalization of single-walled carbon nanotube mixtures.  相似文献   

15.
Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotubes separated by the density-gradient ultracentrifugation method have been measured in the wide energy region from 1 meV to 5 eV. In the high purity metallic nanotube sample, a strong and broad absorption band has been observed at 0.06 eV. This observation suggests that the optical properties of even high purity metallic nanotube bundles cannot be explained by the simple Drude conduction model. We discuss the origin of these absorption bands for metallic and semiconducting nanotube samples by considering the existence of a small energy gap in metallic nanotube bundles and plasmon resonance.  相似文献   

16.
Raman spectra of single-wall carbon nanotubes (CNTs) either in the form of micrometer sized bundles or thin layers prepared by dilution and sonication of powders have been compared. We have been able to collect the Raman spectrum of nanotube bundles that are not in touch with the substrate, and therefore not affected by interactions with the substrate surface. This spectrum resulted to be similar to that of the precursor nanotube powders, whereas relevant changes in the Raman spectrum are detected when the diluted powders form very thin layers on either metallic or insulating surfaces, as probed by confocal microraman imaging on well defined areas of the CNTs layers. In the case of thin layers, the intensity of the Raman D band, detected between 1 320 and 1 340 cm-1 and ascribed to disorder effects, is strongly enhanced. This enhancement occurs independently on the kind of substrate. Received 2 September 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: sangalet@dmf.bs.unicatt.it  相似文献   

17.
Vapor-phase intercalation of a single-walled carbon nanotube sample with Cs was carried out and monitored in situ by Raman spectroscopy. Results indicate that the endpoint of the intercalation was limited by small interstitial gaps in the nanotube bundles. These small-diameter gaps are present because of the significant number of small-diameter nanotubes (0.9-1.0 nm, as calculated from Raman radial breathing mode frequencies) present in the sample. It is not possible to determine from our Raman spectra whether the early endpoint is the result of diffusion limitation or the equilibrium energetics at the endpoint, although some diffusion limitation is observed near the beginning of the reaction. A simple geometric model for expansion of the nanotube bundles under intercalation is presented; this model reproduces, reasonably well, measured expansions reported by others and explains both diffusion- and equilibrium-limited mechanisms in terms of the larger lattice expansion required for smaller-diameter nanotubes. Staging of the intercalation process, in analogy with the staged intercalation of graphite intercalation compounds, is not observed. Instead, the transverse mode peaks undergo a gradual decrease in intensity and a gradual charge transfer- and electronic coupling-induced downshift.  相似文献   

18.
We show that single-walled carbon nanotube (SWNT) bundles emit visible fluorescence in the presence of noble metal nanoparticles and nanorods in the solid state. Conductivity measurements with metallic nanotubes, isolated from pristine SWNTs, show that they become semiconducting in the presence of the metal nanoparticles. Nanoparticle binding increases the defects in the nanotube structures which is evident in the Raman spectra. The metal-semiconductor transition removes the nonradiative decay channels of the excited states enabling visible fluorescence. Nanotube structures are imaged using this emission with resolution below the classical limits.  相似文献   

19.
From resonant Raman scattering on isolated nanotubes we obtained the optical transition energies, the radial breathing mode frequency, and the Raman intensity of both metallic and semiconducting tubes. We unambiguously assigned the chiral index (n(1),n(2)) of approximately 50 nanotubes based solely on a third-neighbor tight-binding Kataura plot and find omega(RBM)=(214.4+/-2) cm(-1) nm/d+(18.7+/-2) cm(-1). In contrast to luminescence experiments we observe all chiralities including zigzag tubes. The Raman intensities have a systematic chiral-angle dependence confirming recent ab initio calculations.  相似文献   

20.
A detailed investigation of the Raman response of the inner tube radial breathing modes (RBMs) in double-wall carbon nanotubes is reported. It revealed that the number of observed RBMs is two to three times larger than the number of possible tubes in the studied frequency range. This unexpected increase in Raman lines is attributed to a splitting of the inner tube response. It originates from the possibility that one type of inner tubes may form in different types of outer tubes. In this case, a splitting of lines results since the inner tube RBM frequency depends on the diameter of the outer tube. Finally, a comparison of the inner tube RBMs and the RBMs of tubes in bundles gave clear evidence for a stronger interaction between tubes in a bundle as compared to the interaction between inner and outer tubes.Received: 15 September 2004, Published online: 23 December 2004PACS: 81.07.De Nanotubes - 81.05.Tp Fullerenes and related materials - 78.30.Na Fullerenes and related materials  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号