首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel organic hyperbranched copper phthalocyanine was synthesized for use as a hole injection nanolayer on ITO in organic light‐emitting diodes (OLEDs). This material is soluble in organic solvents which allows for processing under anhydrous conditions, unlike water based conventional polymer hole injection layer materials such as poly(3,4‐ethylenedioxythiophene)(PEDOT)/polystyrene sulfonate (PSS). The hyperbranched layer increased the luminous efficiency and brightness of single layer OLED devices, in addition to reducing current leakage which causes crosstalk in panel devices, compared to devices prepared from PEDOT/PSS. Therefore, this material is more suitable for OLED applications due to its processing and performance advantages over conventional commercial conducting polymer compositions.

  相似文献   


2.
Supramolecular polyfluorenol enable assembly into conjugated polymer nanoparticles (CPNs). Poly{9‐[4‐(octyloxy)phenyl]fluoren‐9‐ol‐2,7‐diyl} (PPFOH)‐based supramolecular nanoparticles are prepared via reprecipitation. PPFOH nanoparticles with diameters ranging from 40 to 200 nm are obtained by adding different amounts of water into DMF solution. Size‐dependent luminescence is observed in PPFOH‐based hydrogen‐bonded nanoparticles that is different from that of poly(9,9‐dioctylfluorenes). Finally, white light‐emitting devices using CPNs with a size of 80 nm exhibit white emission with the CIE coordinates (0.31, 0.34). Amphiphilic conjugated polymer nanoparticles are potential organic nano‐inks for the fabrication of organic devices in printed electronics.

  相似文献   


3.
The polymerization of bis(4‐ethynylphenyl)methylsilane catalyzed by RhI(PPh3)3 afforded a regio‐ and stereoregular hyperbranched polymer, hb‐poly[(methylsilylene)bis(1,4‐phenylene‐trans‐vinylene)] (poly( 1 )), containing 95% trans‐vinylene moieties. The weight loss of this polymer at 900°C in N2 was 9%. Poly( 1 ) displayed an absorption due to π‐π* transition around 275 nm as a shoulder and a weak absorption around 330 nm due to π‐to‐σ charge transfer, which was hardly seen in the corresponding linear polymer.  相似文献   

4.
5.
A series of new star‐shaped polymers with a triphenylamine‐based iridium(III) dendritic complex as the orange‐emitting core and poly(9,9‐dihexylfluorene) (PFH) chains as the blue‐emitting arms is developed towards white polymer light‐emitting diodes (WPLEDs). By fine‐tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single‐layer WPLEDs with the configuration of ITO (indium‐tin oxide)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A−1 and CIE coordinates of (0.35, 0.33), which is very close to the pure white‐light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star‐shaped white‐emitting single polymers that simultaneously consist of fluorescent and phosphorescent species.

  相似文献   


6.
This work reports on thermally tunable surface wettability of electrospun fiber mats of: polystyrene (PS)/poly(N‐isopropylacrylamide) (PNIPA) blended (bl‐PS/PNIPA) and crosslinked poly[(N‐isopropylacrylamide)‐co‐[methacrylic acid)] (PNIPAMAA) (xl‐NIPAMAA). Both the bl‐PS/PNIPA and xl‐PNIPAMAA fiber mats demonstrate reversibly switchable surface wettability, with the bl‐PS/PNIPA fiber mats approaching superhydrophobic ≥150° and superhydrophilic contact angle (CA) values at extreme temperatures. Weight loss studies carried out at 10 °C indicate that the crosslinked PNIPAMAA fiber mats had better structural integrity than the bl‐PS/PNIPA fiber mats. PNIPA surface chemistry and the Cassie–Baxter model were used to explain the mechanism behind the observed extreme wettability.

  相似文献   


7.
Summary: Poly(N‐vinylpyrrolidone) (PVP) was used in two methods to prepare polymer nanofibers containing Ag nanoparticles. The first method involved electrospinning the PVP nanofibers containing Ag nanoparticles directly from the PVP solutions containing the Ag nanoparticles. N,N‐Dimethylformamide was used as a solvent for the PVP as well as a reducing agent for the Ag+ ions in the PVP solutions. In the second method, poly(vinyl alcohol) (PVA) aqueous solutions were electrospun with 5 wt.‐% of the PVP containing Ag nanoparticles. The Ag nanoparticles were evenly distributed in the PVA nanofibers. PVP containing Ag nanoparticles could be used to introduce Ag nanoparticles to other polymer nanofibers that are miscible with PVP.

TEM image of a PVA nanofiber electrospun with 5 wt.‐% of the PVP containing Ag nanoparticles.  相似文献   


8.
Cross‐linked azobenzene liquid‐crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation.

  相似文献   


9.
A self‐assembly approach to tuning the optical properties of a star copolymer is reported herein. The star copolymer HCP‐star‐PEG with a hyperbranched conjugated polymer (HCP) core and many linear poly(ethylene glycol) (PEG) arms has been prepared successfully. The HCP core was synthesized by Wittig coupling of N‐(n‐hexyl)‐3,6‐diformylcarbazole and 1,3,5‐bis[(triphenylphosphonio)methyl]benzene tribromide. Subsequently, the linear PEG arms were grafted onto the HCP core by acylhydrazone connection. It was found that the optical properties of HCP‐star‐PEG in chloroform solution changed on addition of acid. Both 1H NMR and UV/Vis spectroscopic investigations confirmed that the variation of the optical properties was related to the complexation of the acid and the imine bond in the acylhydrazone group. HCP‐star‐PEG self‐assembled into core–shell micelles in the mixed solvent of chloroform and acetonitrile, which affected the protonation of the imine bond. Therefore the optical properties of HCP‐star‐PEG can be readily controlled by self‐assembly.  相似文献   

10.
11.
Deposition of hole injection layers including a perfluorinated ionomer has been demonstrated using layer‐by‐layer spin self‐assembly for enhanced device efficiency and lifetime in PLEDs. We show that the LBL spin self‐assembled thin films enable to control work functions of indium‐tin oxide anodes by changing the PFI concentration and that a resulting green‐emitting device has an enhanced luminescence efficiency and 18 times longer half lifetime than a device using a conventional HIL. We also fabricate a gradient of energy levels by the LBL self‐assembly of the PFI that results in a work function of 5.74 eV, which can be used to improve carrier injection even for an emitting layer whose ionization potential is over 5.7 eV.

  相似文献   


12.
Summary : A monoterpyridine‐poly(ethylene glycol) (mono‐tpy‐PEG) and a novel monoterpyridine‐PEG‐functionalized iridium(III ) complex were successfully synthesized and fully characterized by means of NMR, IR, and UV‐vis spectroscopy, as well as gel permeation chromatography and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The functionalized monoterpyridine iridium(III ) complex was synthesized by a bridge‐splitting reaction of a dimeric iridium(III ) precursor complex using a chelating terpyridine ligand with a poly(ethylene glycol) tail. With this approach, a new class of light‐emitting polymeric materials revealing interesting optical properties was made avaialable.

Upon excitation of a spin‐coated film of the iridium(III ) complex prepared here, a yellow emission color (two bands in figure) was observed.  相似文献   


13.
We report the synthesis of a 3‐ethylhexyloxy substituted poly(meta‐phenylene), EHO‐PMP that shows absorption and solid state photoluminescence exclusively in the UV region of the electromagnetic spectrum with an emission maximum of 345 nm. Computational analysis of model oligomers by DFT methods indicates that EHO‐PMP is a wide bandgap polymer with the HOMO being localized on a dimeric (biphenyl) unit and with the LUMO being more delocalized. The energy of the LUMO, however, suggests that inefficient electron injection would occur from currently available cathode materials in standard light‐emitting device architectures, and this was observed experimentally. The computational results, coupled with experimental observation, lead us to believe that efficient electroluminescence from organic polymer UV emitters requires advances in electron transport layers and cathode materials. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
Novel water‐insoluble, and reduction‐responsive nonwoven scaffolds were fabricated from γ‐PGA and tested in cell culture. An electrospinning method was developed to produce scaffolds of fibers with diameters of 0.05–0.5 µm. Crosslinking of the fibers with cystamine in the presence of EDC resulted in water‐insoluble γ‐PGA nonwovens with disulfide crosslinkages. These crosslinked fibers were easily decomposed under physiological conditions using L ‐cysteine, a biocompatible reductant. In vitro experiments with mouse L929 fibroblasts showed good adhesion onto γ‐PGA‐SS fiber matrices and excellent cell proliferation. These γ‐PGA‐SS nonwovens can be used as novel biocompatible and biodegradable scaffolds with reduction‐responsiveness for biomedical or tissue engineering applications.

  相似文献   


15.
We report that poly(3,4‐ethylenedioxythiophene) derived from poly(ionic liquid) (PEDOT:PIL) constitutes a unique polymeric hole‐injecting material capable of improving device lifetime in organic light‐emitting diodes (OLEDs). Imidazolium‐based poly(ionic liquid)s were engineered to impart non‐acidic and non‐aqueous properties to PEDOT without compromising any other properties of PEDOT. A fluorescent OLED was fabricated using PEDOT:PIL as a hole‐injection layer and subjected to a performance evaluation test. In comparison with a control device using a conventional PEDOT‐based material, the device with PEDOT:PIL was found to achieve a significant improvement in terms of device lifetime. This improvement was attributed to a lower indium content in the PEDOT:PIL layer, which can be also interpreted as the effective protection characteristics of PEDOT:PIL for indium extraction from the electrodes.

  相似文献   


16.
Poly(ethylene glycol)‐poly(lactide) (PEG‐PLA) block copolymers are processed to solvent cast films and solution electrospun meshes. The effect of polymer composition, architecture, and number of anchoring points for the plasticizer on swelling, degradation, and mechanical properties of these films and meshes is investigated as potential barrier device for the prevention of peritoneal adhesions. As a result, adequate properties are achieved for the massive films with a longer retention of the plasticizer PEG for star‐shaped block copolymers than for the linear triblock copolymers and consequently more endurable mechanical properties during degradation. For electrospun meshes fabricated using the same polymers, similar trends are observed, but with an earlier start of fragmentation and lower tensile strengths. To overcome the poor mechanical strengths and an occurring shrinkage during incubation, which may impair the coverage of the wound, further adaptions of the meshes and the fabrication process are necessary.

  相似文献   


17.
The synthesis and electrochemical polymerization of 3,3‐diethyl‐3,4‐dihydro‐2H‐thieno‐[3,4‐b][1,4]dioxepine (ProDOT‐Et2) was performed resulting in a stable electrochromic polymer capable of switching between an absorbing blue neutral state and a highly transmissive sky‐blue oxidized state in sub‐second time frames. High optical switching contrast ratios (up to 75% at λmax) and high composite coloration efficiencies (505 cm2/C) were measured.  相似文献   

18.
19.
A novel semi‐interpenetrating polymer network based on alginate and poly(N‐isopropylacrylamide) (PNiPAAm) has been synthesized that shows response to temperature and magnetic fields. Highly homogeneous porous hydrogels are obtained by copolymerizing N‐isopropylacrylamide and bis‐acrylamide in the presence of an aqueous alginate solution. The synthesis of magnetic iron oxides by in‐situ oxidation of iron cations coordinated to the alginate network results in a hydrogel with an enhanced deswelling rate with respect to pure PNiPAAm.

  相似文献   


20.
Novel poly[(fluorene)‐co‐(2,8‐dioctyldibenzothiophene‐S,S‐dioxide‐3,7‐diyl)]s were synthesized. The octyl group on the 2,8‐dioctyldibenzothiophene‐S,S‐dioxide (DOSO) unit improved the solubility of the polymers and broadened the optical band gap from 2.95 to 3.20 eV as the content of DOSO unit increases. The electroluminescence (EL) spectra of polymers show CIE coordinates around (0.16, 0.07) independent of the ratio of DOSO units in the polymers, owing to the ICT and steric hindrance dual‐function. A high efficiency of 3.1 cd · A−1 (EQE = 3.9%) was obtained with the configuration of ITO/PEDOT:PSS/polymer/Ba/Al. The results indicate that PF‐3,7DOSOs could be a promising candidate for saturated blue‐emitting polymers with spectral stability and high efficiency.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号