首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Flow‐induced structure formation is investigated with in situ wide‐angle X‐ray diffraction with high acquisition rate (30 Hz) using isotactic polypropylene in a piston‐driven slit flow with high wall shear rates (up to ≈900 s−1). We focus on crystallization within the shear layers that form in the high shear rate regions near the walls. Remarkably, the kinetics of the crystallization process show no dependence on either flow rate or flow time; the crystallization progresses identically regardless. Stronger or longer flows only increase the thickness of the layers. A conceptual model is proposed to explain the phenomenon. Above a certain threshold, the number of shish‐kebabs formed affects the rheology such that further structure formation is halted. The critical amount is reached already within 0.1 s under the current flow conditions. The change in rheology is hypothesized to be a consequence of the “hairy” nature of shish. Our results have large implications for process modelling, since they suggest that for injection molding type flows, crystallization kinetics can be considered independent of deformation history.

  相似文献   


2.
Imitating the natural “energy cascade” architecture, we present a single‐molecular rod‐like nano‐light harvester (NLH) based on a cylindrical polymer brush. Block copolymer side chains carrying (9,9‐diethylfluoren‐2‐yl)methyl methacrylate units as light absorbing antennae (energy donors) are tethered to a linear polymer backbone containing 9‐anthracenemethyl methacrylate units as emitting groups (energy acceptors). These NLHs exhibit very efficient energy absorption and transfer. Moreover, we manipulate the energy transfer by tuning the donor–acceptor distance.

  相似文献   


3.
The synthesis and characterization of poly(3,4‐ethylenedioxythiophene) (PEDOT) using water‐assisted vapor phase polymerization (VPP) and oxidative chemical vapor deposition (oCVD) are reported. For the VPP PEDOT, the oxidant, FeCl3, is sublimated onto the substrate from a heated crucible in the reactor chamber and subsequently exposed to 3,4‐ethylenedioxythiophene (EDOT) monomer and water vapor in the same reactor. The oCVD PEDOT was produced by introducing the oxidant, EDOT monomer, and water vapor simultaneously to the reactor. The enhancement of doping and crystallinity is observed in the water‐assisted oCVD thin films. The high doping level observed at UV–vis–NIR spectra for the oCVD PEDOT, suggests that water acts as a solubilizing agent for oxidant and its byproducts. Although the VPP produced PEDOT thin films are fully amorphous, their conductivities are comparable with that of the oCVD produced ones.

  相似文献   


4.
Amino‐acid‐based chiral surfactants with polymerizable moieties are synthesized, and a versatile approach to prepare particles thereof with a chiral surface functionality is presented. As an example of an application, the synthesized particles are tested for their ability as nucleating agents in the enantioselective crystallization of amino acid conglomerate systems, taking rac‐asparagine as a model system. Particles resulting from chiral surfactants with different tail groups are compared and the results demonstrate that only the chiral nanoparticles made of the polymerizable surfactant are able to act efficiently as nucleation agent in enantioselective crystallization.

  相似文献   


5.
Diselenide‐containing polymers are facilely synthesized from polymers prepared by atom transfer radical polymerization (ATRP). Benefiting from the ATRP technology, this protocol provides a flexible route for controlling the polymer structure, which allows for a great variety of architectures of selenium‐containing polymer materials for applications in various fields. The oxidative and reductive responsive behavior of the obtained diselenide‐containing polymers is also investigated.

  相似文献   


6.
It is demonstrated that light polarization can be used to control photothermal effect‐based shape‐memory polymers (SMPs). Gold nanorods (AuNRs) are embedded in poly(vinyl alcohol) (PVA) and aligned by stretching the composite film. By changing the polarization direction of the incident laser at 785 nm with respect to the film stretching direction, the magnitude of the longitudinal surface plasmon resonance of AuNRs can be varied continuously, which determines the amount of heat generated upon laser exposure and thus the local temperature rise in the composite relative to the glass transition of the PVA matrix. Consequently, the temporary‐to‐permanent shape recovery process of the composite can be made to occur to different extents by tuning the polarization of laser while keeping all other conditions unchanged. This finding enhances the toolbox for controlling light‐triggered SMPs.

  相似文献   


7.
Inspired by the multifunctionality of vitamin D‐binding protein and the multiple transient‐binding behavior of some intrinsically disordered proteins (IDPs), a polymeric platform is designed, prepared, and characterized for combined delivery of dermal protective and anticancer bioactive cargos on the basis of artificial single‐chain nano‐objects mimicking IDPs. For the first time ever, simultaneous delivery of folic acid or vitamin B9, and hinokitiol, a relevant natural bioactive compound that exhibits anticancer activity against human malignant melanoma cells, from these multidirectionally self‐assembled unimolecular nanocarriers is illustrated.

  相似文献   


8.
Photodegradable physically cross‐linked polymer networks are prepared from self‐assembly of photolabile triblock copolymers. Linear triblock copolymers composed of poly (o‐nitrobenzyl methacrylate) and poly(ethylene glycol) (PEG) segments of variable molecular weights were synthesized using atom transfer radical polymerization. Triblock polymers with low‐molecular‐weight PEG segments form solid films upon hydration with robust mechanical properties including a Young's modulus of 76 ± 12 MPa and a toughness of 108 ± 31 kJ m−3. Triblock polymers with high‐molecular‐weight PEG segments form physically cross‐linked hydrogels at room temperature with a dynamic storage modulus of 13 ± 0.6 kPa and long‐term stability in hydrated environments. Both networks undergo photodegradation upon irradiation with long wave UV light.

  相似文献   


9.
Synthesis of hydroxy‐functionalized cyclic olefin copolymer (COC) is achieved with remarkably high activity (up to 5.96 × 107 g‐polymer mol‐Ti−1 h−1) and controlled hydroxy group in a wide range (≈17.1 mol%) by using ansa‐dimethylsilylene (fluorenyl)(amido)titanium complex. The catalyst also promotes living/controlled copolymerization to afford novel diblock copolymers consisting of hydroxy‐functionalized COC and semicrystalline polyolefin sequence such as polyethylene and syndiotactic polypropylene, where the glass transition temperature of the norbornene/10‐undecen‐1‐ol segment and each block length are controlled by comonomer composition and copolymerization time, respectively.

  相似文献   


10.
This work describes the synthesis of π‐conjugated polymers possessing arylene and 1,3‐butadiene alternating units in the main chain by the reaction of α,β‐unsaturated ester/nitrile containing γ‐H with aromatic/heteroaromatic aldehyde compound. By using 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester as a model monomer, the different polymerization conditions, including catalyst, catalyst amount, and solvent, are optimized. The polymerization of 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester is carried out by refluxing in ethanol for 72 h with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst to give a 1,3‐butadiene‐containing π‐conjugated polymer, poly(phenylene‐1,3‐butadiene), in 84.3% yield with and / (PDI) estimated as 6172 and 1.65, respectively. Based on this new methodology, a series of π‐conjugated polymers containing 1,3‐butadiene units with different substituents are obtained in high yields. A possible mechanism is proposed for the polymerization through a six‐membered ring transition state and then a 1,5‐H shift intermediate.

  相似文献   


11.
A photocleavable terpolymer hydrogel cross‐linked with o‐nitrobenzyl derivative cross‐linker is shown to be capable of self‐shaping without losing its physical integrity and robustness due to spontaneous asymmetric swelling of network caused by UV‐light‐induced gradient cleavage of chemical cross‐linkages. The continuum model and finite element method are used to elucidate the curling mechanism underlying. Remarkably, based on the self‐changing principle, the photosensitive hydrogels can be developed as photoprinting soft and wet platforms onto which specific 3D characters and images are faithfully duplicated in macro/microscale without contact by UV light irradiation under the cover of customized photomasks. Importantly, a quick response (QR) code is accurately printed on the photoactive hydrogel for the first time. Scanning QR code with a smartphone can quickly connect to a web page. This photoactive hydrogel is promising to be a new printing or recording material.

  相似文献   


12.
This paper reports on the synthesis of well‐defined polyacrylamide‐based nanogels via reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization, highlighting a templateless route for the efficient synthesis of nanogels based on water‐soluble polymers. RAFT dispersion polymerization of acrylamide in co‐nonsolvents of water–tert‐butanol mixtures by chain extension from poly(dimethylacrylamide) shows well‐controlled polymerization process, uniform nanogel size, and excellent colloidal stability. The versatility of this approach is further demonstrated by introducing a hydrophobic co‐monomer (butyl acrylate) without disturbing the dispersion polymerization process.

  相似文献   


13.
Binary polystyrene and poly(4‐vinylpyridine) mixed grafted silica nanoparticles (PSt/P4VP‐g‐SNPs) are fabricated using CuI‐catalyzed azide‐alkyne Huisgen cycloaddition (CuAAC) via grafting‐to method. Azide‐terminated PSt and P4VP are synthesized via post‐ and pre‐atom transfer radical polymerization modification, respectively. Then, the polymers are simultaneously anchored onto alkyne‐modified SNPs by CuAAC yielding mixed brushes as shown by Raman spectroscopy, dynamic light scattering, and thermogravimetric analysis. To the best of our knowledge, this is the first report of simultaneously grafting two distinct polymer chains to synthesize mixed grafted silica nanoparticles using CuAAC technique via grafting‐to method.

  相似文献   


14.
Molecular bottle‐brush functionalized single‐walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one‐pot synthetic methodology. Elongating the main‐chain and side‐chain length of molecular bottle‐brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs.

  相似文献   


15.
Stimuli responsive surfaces that show reversible fluorescence switching behavior in response to temperature changes were fabricated. Oligo(ethylene glycol) methacrylate thermoresponsive polymers with amine end‐groups were prepared by atom transfer radical polymerization (ATRP). The polymers were patterned on silicon surfaces by electron beam (e‐beam) lithography, followed by conjugation of self‐quenching fluorophores. Fluorophore conjugated hydrogel thin films were bright when the gels were swollen; upon temperature‐induced collapse of the gels, self‐quenching of the fluorophores led to significant attenuation of fluorescence. Importantly, the fluorescence was regained when the temperature was cooled. The fluorescence switching behavior of the hydrogels for up to ten cycles was investigated and the swelling‐collapse was verified by atomic force microscopy. Morphing surfaces that change shape several times upon increase in temperature were obtained by patterning multiple stimuli responsive polymers.

  相似文献   


16.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


17.
Diarylbutadiyne derivatives are ideal monomers for providing the π‐electron‐conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side‐chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π‐electron‐conjugated PDA.

  相似文献   


18.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


19.
Poly(N‐isopropylacrylamide)‐block‐poly(l ‐lactic acid)‐block‐poly(N‐isopropylacrylamide) (PNIPAAM‐b‐PLLA‐b‐PNIPAAM) and PNIPAAM‐b‐PDLA‐b‐PNIPAAM triblock copolymers with varying polylactic acid (PLA) lengths are synthesized using a combination of ring‐opening polymerization and atom‐transfer radical polymerization. Results of 1H NMR and gel permeation chromatography analyses show that the copolymers have a well‐defined triblock structure and the PLA segment lengths can be readily controlled with monomer feed ratio. Stereocomplexation between the enantiomeric PLA segments is confirmed with differential scanning calorimetry and wide‐angle X‐ray scattering. Dynamic light scattering experiments show that (1) the LCST of PNIPAAM in water could be tailored from 32 °C up to 38.5 °C by increasing the length of PLA segments and mixing copolymers of similar molecular weight with enantiomeric PLA segments to induce stereocomplexation, and (2) the LCST of each mixed copolymer system could be tailored within a 2–3 °C range of body temperature by manipulating the ratio of the enantiomeric copolymers in solution.

  相似文献   


20.
A novel and facile bottom‐up strategy for preparing core‐shell nanofibers with selectively localized carbon nanotubes is developed using hierarchical composite micelles of crystalline‐coil copolymer and carbon nanotubes as the building blocks. An amphiphilic di‐block copolymer of poly (p‐dioxanone) (PPDO) and PEG (polyethylene glycol) functionalized with pyrene moieties at the chain ends of PPDO blocks (Py‐PPDO‐b‐PEG) is designed for constructing composite micelles with multiwalled carbon nanotubes (MWCNTs). The self‐assembly of Py‐PPDO‐b‐PEG and MWCNTs is co‐induced by the crystallization of PPDO blocks and the π–π stacking interactions between pyrene moieties and MWCNTs, resulting in composite micelles with “shish kebab”‐like nanostructure. A mixture of composite micelles and polyvinyl alcohol (PVA) water solution is then used as the spinning solution for preparing electrospun nanofibers. The morphologies of the nanofibers with different composition are investigated by SEM and TEM. The results suggest that the MWCNTs selectively localized in the core of the nanofibers of MWCNTs/Py‐PPDO‐b‐PEG/PVA. The alignment and interfusion of composite micelles during the formation of nanofibers may confine the carbon nanotubes in the hydrophobic core region. In contrast, the copolymer without pyrene moieties cannot form composite micelles, thus these nanofibers show selective localization of MWCNTs in the PVA shell region.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号