首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hierarchical self‐assembly of transient composite hydrogels is demonstrated through a two‐step, orthogonal strategy using nanoparticle tectons interconnected through metal–ligand coordination complexes. The resulting materials are highly tunable with moduli and viscosities spanning many orders of magnitude, and show promising self‐healing properties, while maintaining complete optical transparency.

  相似文献   


2.
The different mechanisms contributing to adhesion between two polymer surfaces are summarized and described in individual examples, which represent either seminal works in the field of adhesion science or novel approaches to achieve polymer–polymer adhesion. A further objective of this article is the development of new methodologies to achieve strong adhesion between low surface energy polymers.

  相似文献   


3.
Three novel solution‐processable polyimides containing triphenylamine and pendant viologen moieties are prepared from the newly synthesized diamine and three commercially available dianhydrides. The thermally stable polyimide with strong donor–acceptor charge‐transfer possesses write‐once read‐many‐times memory behavior with excellent operation stability. The obtained multicolored electrochromic polymer films reveal ambipolar electrochemical behavior with high optical transmittance contrast of coloration changed from transmissive neutral state to the cyan/magenta/yellow redox states, implying great potential for application in smart window and displays.

  相似文献   


4.
Polyethers—polymers with the structural element (R'‐O‐R)n in their backbone—are an old class of polymers which were already used at the time of the ancient Egyptians. However, still today these materials are highly important with applications in all areas of our life, reaching from the automotive and paper industry to cosmetics and biomedical applications. In this Review, different aliphatic polyethers like poly(epoxide)s, poly(oxetane)s, and poly(tetrahydrofuran) are discussed. Special emphasis is placed on the history, the polymerization techniques (industrially and in academia), the properties, the applications as well as recent developments of these materials.

  相似文献   


5.
A novel strategy for the incorporation of carbon dioxide into polymers is introduced. For this purpose, the Ugi five‐component condensation (Ugi‐5CC) of an alcohol, CO2, an amine, an aldehyde, and an isocyanide is used to obtain step‐growth monomers. Polymerization via thiol‐ene reaction or polycondensation with diphenyl carbonate gives diversely substituted polyurethanes or alternating polyurethane‐polycarbonates, respectively. Furthermore, the application of 1,12‐diaminododecane and 1,6‐diisocyanohexane as bifunctional components in the Ugi‐5CC directly results in the corresponding polyamide bearing methyl carbamate side chains ( = 19 850 g mol−1). The latter polymer is further converted into the corresponding polyhydantoin in a highly straightforward fashion.

  相似文献   


6.
Nonspecific adsorption of proteins is a challenging problem for the development of biocompatible materials, as well as for antifouling and fouling‐release coatings, for instance for the marine industry. The concept of preparing amphiphilic systems based on low surface energy hydrophobic materials via their hydrophilic modification is being widely pursued. This work describes a novel two‐step route for the preparation of interpenetrating polymer networks of otherwise incompatible poly(dimethylsiloxane) and zwitterionic polymers. Changes in surface hydrophilicity as well as surface charge at different pH values are investigated. Characterization using atomic force microscopy provides thorough insight into surface changes upon hydrophilic modification. Protein fouling of the materials is assessed using fibrinogen as a model protein.

  相似文献   


7.
The synthesis, tunable thermoresponsive properties, and self‐assembly of dual redox and thermoresponsive double hydrophilic block copolymers having pendant disulfide linkages (DHBCss) are reported. Well‐defined DHBCss composed of a hydrophilic poly(ethylene oxide) block and a dual thermo‐ and reduction‐responsive random copolymer block containing pendant disulfide linkages are synthesized by atom transfer radical polymerization. Their lower critical solution temperature (LCST) transitions are adjusted through modulating pendant hydrophobic–hydrophilic balance with disulfide–thiol–sulfide chemistry. Further, these DHBCss derivatives are converted to disulfide‐crosslinked nanogels at temperatures above LCST through temperature‐driven self‐assembly and in situ disulfide crosslinking. They exhibit enhanced colloidal stability and further reduction‐responsive degradability, thus demonstrating versatility of dual thermo‐ and reduction‐responsive smart materials.

  相似文献   


8.
Dispersions of short electrospun fibers are utilized for the preparation of nanofiber nonwovens with different weight area on filter substrates. The aerosol filtration efficiencies of suspension‐borne nanofiber nonwovens are compared to nanofiber nonwovens prepared directly by electrospinning with similar weight area. The filtration efficiencies are found to be similar for both types of nonwovens. With this, a large potential opens for processing, design, and application of new nanofiber nonwovens obtained by wet‐laying of short electrospun nanofiber suspensions.

  相似文献   


9.
Here, a novel method is demonstrated for the preparation of three‐arm branched microporous organic nanotube networks (TAB‐MONNs) based on molecular templating of three‐arm branched core–shell bottlebrush copolymers and Friedel–Crafts alkylation reaction. The unique three‐arm branched bottlebrush copolymers are synthesized by a combination of atom transfer radical polymerization, reversible addition‐fragmentation chain transfer polymerization, and ring‐opening polymerization techniques. In this approach, the length and diameter of branched tube units can be well‐controlled by rational molecular design. Moreover, the as‐prepared TAB‐MONNs possess a high surface area and exhibit a superior adsorption capacity for Rhodamine 6G (R6G) and p‐cresol.

  相似文献   


10.
Biocompatible lipo‐histidine hybrid materials conjugated with IR820 dye show pH‐sensitivity, efficient intracellular delivery of doxorubicin (Dox), and intrinsic targetability to cancer cells. These new materials form highly uniform Dox‐loaded nanosized vesicles via a self‐assembly process showing good stability under physiological conditions. The Dox‐loaded micelles are effective for suppressing MCF‐7 tumors, as demonstrated in vitro and in vivo. The combined mechanisms of the EPR effect, active internalization, endosomal‐triggered release, and drug escape from endosomes, and a long blood circulation time, clearly prove that the IR820 lipopeptide DDS is a safe theranostic agent for imaging‐guided cancer therapy.

  相似文献   


11.
Aggregation‐induced emission (AIE) is an abnormal phenomenon that has sparked great attention for diverse applications in different fields. In particular, the fabrication and biological imaging applications of AIE‐active fluorescent organic nanoparticles (FONs) have become a focus in the emerging and promising fields. A large number of AIE‐active polymeric nanoprobes have recently been fabricated through different strategies. The advances and progress in this direction have also recently been summarized by some groups. However, the fabrication and biomedical applications of AIE‐active FONs based on carbohydrate polymers and AIE‐active dyes are quite rare and limited. In this feature article, the recently reported AIE‐active FONs with different structures and applications based on AIE‐active dyes and carbohydrate polymers are highlighted, and the major current limitations and development tendencies are also discussed.

  相似文献   


12.
A unique fabrication process of low molar mass, crystalline polypeptoid fibers is described. Thermoresponsive fiber mats are prepared by electrospinning a homogeneous blend of semicrystalline poly(N‐(n‐propyl) glycine) (PPGly; 4.1 kDa) with high molar mass poly(ethylene oxide) (PEO). Annealing of these fibers at ≈100 °C selectively removes the PEO and produces stable crystalline fiber mats of pure PPGly, which are insoluble in aqueous solution but can be redissolved in methanol or ethanol. The formation of water‐stable polypeptoid fiber mats is an important step toward their utilization in biomedical applications such as tissue engineering or wound dressing.

  相似文献   


13.
Moisture or water has the advantages of being green, inexpensive, and moderate. However, it is challenging to endow water‐induced shape memory property and self‐healing capability to one single polymer because of the conflicting structural requirement of the two types of materials. In this study, this problem is solved through introducing two kinds of supramolecular interactions into semi‐interpenetrating polymer networks (semi‐IPNs). The hydrogen bonds function as water‐sensitive switches, making the materials show moisture‐induced shape memory effect. The host–guest interactions (β‐cyclodextrin‐adamantane) serve as both permanent phases and self‐healing motifs, enabling further increased chain mobility at the cracks and self‐healing function. In addition, these polyvinylpyrrolidone/poly(hydroxyethyl methacrylate‐co‐butyl acrylate) semi‐IPNs also show thermosensitive triple‐shape memory effect.

  相似文献   


14.
Micromolding surface‐initiated polymerization enables the fabrication of polymer coatings that reproduce the microscale surface topography of superhydrophobic leaves onto solid supports. Here, the surfaces of superhydrophobic leaves from Trifolium repens and Aristolochia esperanzae are molded and reproduced as the topography of a partially fluorinated polymer coating through the surface‐initiated ring‐opening metathesis polymerization of 5‐(perfluorooctyl)norbornene (NBF8). The polymer coatings have thicknesses exceeding 100 μm, which can be tailored by the amount of monomer added to the mold. These coatings are robustly bound to the substrate, contain compositions not found in nature, and achieve superhydrophobicity that is comparable to the actual leaf.

  相似文献   


15.
In this work, the incorporation of a 2,2,6,6‐tetramethylpiperydinyl‐1‐oxyl (TEMPO) group to a benzoxazine ring is performed using a one‐pot synthesis for the preparation of TEMPO‐functionalized benzoxazine compounds and polymers as reactive and crosslinkable initiators for nitroxide‐mediated polymerization (NMP). The TEMPO‐functionalization reaction of benzoxazine, traced with 1H NMR, is conducted with sequential radical transfer and coupling reactions. Moreover, polystyrene‐grafted polybenzoxazine copolymers are prepared with the TEMPO‐benzoxazine initiator and NMP of styrene. The polymerization system exhibits the characteristics of controlled radical polymerization, including controlled molecular weights of products and ability for sequential polymerization. Moreover, based on the chemical reactivity and crosslinking ability of benzoxazine groups, the synthesis route developed in this work will widen the scope of the design and synthesis of functional and high‐performance polymers.

  相似文献   


16.
The unique mechanical performance of nacre, the pearly internal layer of shells, is highly dependent on its complex morphology. Inspired by the structure of nacre, the fabrication of well‐ordered layered inorganic–organic nanohybrids is presented herein. This biomimetic approach includes the use of a block copolymer template, consisting of hydrophobic poly(vinylidene fluoride) (PVDF) lamellae covered with hydrophilic poly(methacrylic acid) (PMAA), to direct silica (SiO2) mineralization. The resulting PVDF/PMAA/SiO2 nanohybrid material resembles biogenic nacre with respect to its well‐ordered and layered nanostructure, alternating organic–inorganic phases, macromolecular template, and mild processing conditions.

  相似文献   


17.
The fabrication of electrospun polymer fibers is demonstrated with anisotropic cross‐sections by applying a simple pressing method. Electrospun polystyrene or poly(methyl methacrylate) fibers are pressed by flat or patterned substrates while the samples are annealed at elevated temperatures. The shapes and morphologies of the pressed polymer fibers are controlled by the experimental conditions such as the pressing force, the pressing temperature, the pressing time, and the surface pattern of the substrate. At the same pressing force, the shape changes of the polymer fibers can be controlled by the pressing time. For shorter pressing times, the deformation process is dominated by the effect of pressing and fibers with barrel‐shaped cross‐sections can be generated. For longer pressing times, the effect of wetting becomes more important and fibers with dumbbell‐shaped cross‐sections can be obtained. Hierarchical polymer fibers with nanorods are fabricated by pressing the fibers with porous anodic aluminum oxide templates.

  相似文献   


18.
A new and easy method of stimuli‐triggered growth and removal of a bioreducible nanoshell on nanoparticles is reported. The results show that pH or temperature could induce the aggregation of disulfide‐contained branched polymers at the surface of nanoparticles; subsequently, the aggregated polymers could undergo intermolecular disulfide exchange to cross‐link the aggregated polymers, forming a bioreducible polymer shell around nanoparticles. When these nanoparticles with a polymer shell are treated with glutathione (GSH) or d,l ‐dithiothreitol (DTT), the polymer shell could be easily removed from the nanoparticles. The potential application of this method is demonstrated by easily growing and removing a bioreducible shell from liposomes, and improvement of in vivo gene transfection activity of liposomes with a bioreducible PEG shell.

  相似文献   


19.
Three‐dimensional macroporous scaffolds have extensively been studied for cell‐based tissue engineering but their use is mostly limited to mechanical support for cell adhesion and growth on the surface of macropores. Here, a templated fabrication method is described to prepare cell‐friendly inverse opal‐like hydrogels (IOHs) allowing both cell encapsulation within the hydrogel matrix and cell seeding on the surface of macropores. Ionically crosslinked alginate microbeads and photocrosslinkable biocompatible polymers are used as a sacrificial template and as a matrix, respectively. The alginate microbeads are easily removed by a chelating agent, with minimal toxicity for the encapsulated cells during template removal. The outer surface of macropores in IOHs can also provide a space for cell adherence. The cells encapsulated or attached in IOHs are able to remain viable and to proliferate over time. The elastic modulus and cell‐adhesion properties of IOHs can be easily controlled and tuned. Finally, it is demonstrated that IOH can be used to co‐culture two distinct cell populations in different spatial positions. This cell‐friendly IOH system provides a 3D scaffold for organizing different cell types in a controllable microenvironment to investigate biological processes such as stem cell niches or tumor microenvironments.

  相似文献   


20.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号