首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
Nickel phosphide (Ni2P) and bimetallic iron–nickel phosphides [(Fe x Ni y )2P] nanorods were fabricated by a seeded growth strategy. This strategy utilized pre-synthesized Fe3O4 nanoparticles as seeds and the thermal decomposition of metal precursors by multiple injections in a solution containing trioctylphosphine and didodecyldimethylammonium bromide (DDAB). The nanorods were characterized by transmission electron microscopy, X-ray diffraction, and magnetic measurements were carried out using superconducting quantum interference device (SQUID). The rod length was tunable, ranging from 10 to 110 nm depending on the number of injections, whereas the diameter of the rods was nearly 6 nm. It was found that the rod size increased with the number of injections under the constant total injection concentration and reaction time. In addition, the effect of the DDAB quantity used as a co-surfactant was studied, which showed that an optimum quantity was required to achieve uniform nanorods. Magnetic characterizations were performed over the two kinds of nanorods to identify their respective magnetic phases. The results demonstrated that the Ni2P nanorods were defined as a Curie–Weiss paramagnet, whereas the (Fe x Ni y )2P nanorods exhibited superparamagnetic characteristics.  相似文献   

2.
3.
Hardness and Young's modulus were measured by nanoindentation on a series of electrodeposited nanocrystalline nickel and nickel–iron alloys. Hardness values showed a transition from regular to inverse Hall–Petch behaviour, consistent with previous studies. There was no significant influence of grain size on the Young's modulus of nanocrystalline nickel and nickel–iron alloys with grain sizes greater than 20?nm. The Young's modulus values for nanocrystalline nickel and nickel–iron alloys for grain sizes less than 20?nm were slightly reduced when compared to their conventional (randomly oriented) polycrystalline counterparts. The observed trend with decreasing grain size was found to be consistent with composite model predictions that consider the influence of intercrystalline defects. However, there was some notable variability of the measured values when compared to the model predictions. Three theoretical relationships were used to characterise the anisotropic elastic behaviour of these materials. As a result, texture was also considered to have an influence on the measured Young's modulus and used to explain some of the observed variability for the entire grain size range (9.8–81?nm).  相似文献   

4.
The magnetic hyperfine fields for63Ni,66Cu, and67Zn nuclei in nickel metal have been measured by means of perturbed-ray angular distribution techniques at different temperatures up to 1 K below the Curie temperature,T C . The temperature dependence of the fields can be very well fitted by (1—T/T C ) with best values=0.322(16) for63NiNi, = 0.427(42) for66CuNi, and=0.427(14) for67ZnNi respectively. The differences between these exponents indicate that there could be probe atom dependent deviations from proportionality between hyperfine field and bulk magnetization in the critical region.Work performed in partial fulfillment of the requirements for a doctorate in physics at the Freie Universität, Berlin  相似文献   

5.
Several magnetic and optical processes contribute to the magneto-optical response of nickel thin films after excitation by a femtosecond laser pulse. We achieved a first complete identification by explicitly measuring the time-resolved Kerr ellipticity and rotation, as well as its temperature and magnetic field dependence in epitaxially grown (111) and (001) oriented Cu/Ni/Cu wedges. The first hundreds of femtoseconds the response is dominated by state filling effects. The true demagnetization takes approximately 0.5-1 ps. At the longer (sub-ns) time scales the spins are found to precess in their anisotropy field. Simple and transparent models are introduced to substantiate our interpretation.  相似文献   

6.
I compare the lattice spacings, synthesis conditions, and magnetic properties of hexagonal close-packed (hcp) Ni with Ni3C reported recently in the literature. The reported lattice spacings and synthesis conditions of hcp Ni and Ni3C are almost indiscernible. In addition, the magnetic properties of hcp Ni and Ni3C show similar characteristics. Based on my experimental investigations on Ni3C and the reported density functional theory calculations on the magnetic properties of hcp Ni, I present an explanation for understanding the discrepancies in the experimental results regarding hcp Ni reported in the literature.  相似文献   

7.
Free-standing magnesium–nickel (Mg–Ni) films with extensive nanoscale grain structures were fabricated using a combination of pulsed laser deposition and film delaminating processes. Hydrogen sorption and desorption properties of the films, free from the influence of substrates, were investigated. Oxidation of the material was reduced through the use of a sandwiched free-standing film structure in which the top and bottom layers consist of nanometer-thick Pd layers, which also acted as a catalyst to promote hydrogen uptake and release. Hydrogen storage characteristics were studied at three temperatures, 296, 232, and 180°C, where multiple sorption/desorption cycles were measured gravimetrically. An improvement in hydrogen storage capacity over the bulk Mg–Ni target material was found for the free-standing films. As shown from a Van’t Hoff plot, the thermodynamic stability of the nanograined films is similar to that of Mg2Ni. These results suggest that free-standing films, of which better control of material compositions and microstructures can be realized than is possible for conventional ball-milled powders, represent a useful materials platform for solid-state hydrogen storage research.  相似文献   

8.
A series of electroplating works have been conducted to investigate the best condition for the coelectrodeposition of nickel–alumina (Ni/α–Al2O3) composite coating. Co-electrodeposition was done onto mild steel as cathode at ambient temperature (27°C) with current density of 30 mA/cm2 under α-Al2O3 concentration of 2 g/l and various agitation speeds of 50, 100, 150, 200, and 250 rpms. The cross-section of the composite coatings portrayed α-Al2O3 particles was co-deposited. Under field emission scanning electron microscopy analysis, the coating shows a coarse surface morphology, while cross-sectional microstructures shows a compact embedding of α-Al2O3 particle in the Ni matrix. Elemental analysis by EDX detected the presence of Ni and α-Al2O3. Vickers microhardness testing shows that the coating hardness increases almost 60% at the highest agitation speed, i.e., 250 rpm.  相似文献   

9.
Nickel–zinc ferrites of different compositions, Ni1−xZnxFe2O4 with x=0.2, 0.35, 0.5 and 0.6, have been prepared by a precursor method involving citrate precursors of the concerned metals and mixing them in solution state. Resistivity has been studied as a function of composition and sintering temperature. It is observed that NiZn ferrites prepared by this method have resistivity ⩾108 Ω cm which is higher by atleast two orders of magnitude than that reported (⩽106 Ω cm) for ferrites prepared by the conventional ceramic method. This is attributed to better purity as well as better compositional and microstructural control achievable by the citrate method. High resistivity makes these ferrites suitable particularly for high-frequency applications where eddy current losses are required to be low.  相似文献   

10.
Nishimura  K.  Mori  K.  Ohya  S.  Muto  S.  Hutchison  W.D.  Harker  S.J.  Chaplin  D.H. 《Hyperfine Interactions》1999,120(1-8):203-207
Low-temperature nuclear orientation was applied to study hyperfine interactions of 142Pr, 147Nd and 143,144Pm nuclei in Pr0.5Nd0.5Ni single crystal. Angular distributions, temperature dependence and external magnetic field effects on the γ-ray anisotropy are presented. A Nd-Pm exchange interaction seems to dominate the magnetic properties of Pm ions in this system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The nucleation and growth of interstitial loops during irradiation has a : ontrolling effect on the subsequent swelling behaviour of metals. In nickel based alloys containing ordered γ' precipitate (Ni3Al, Ti), interactions occur between the nucleated loops and γ' particles. This effect has been studied in two nickel based alloys using a High Voltage Electron Microscope.

For the case of Nimonic 80A alloy containing 18% volume fraction : gamma;' precipitate, dislocation loop-particle interactions obeyed the developed isotropic elasticity theory.2'3'12 Consequently, rather low dislocation densities were developed and the swelling resistance was high during electron irradiation. In Nimonic 115A alloy, loop nucleation and growth was dependent on the availability of interfacial dislocation surrounding the γ' particles.

With regard to the swelling behaviour of γ' hardened alloys, it : s concluded that several mechanisms contribute to make these materials resistant.

Coherency strains at the γ' particles reduce the density of : limbing dislocations.

The γ' precipitate affects the climb efficiency of the : ucleated dislocations by:

pinning the dislocation line, thus introducing a line tension force : hich opposes dislocation climb and reduces swelling;

reducing the available volume of material in which dislocation loops : an nucleate and grow.  相似文献   

12.
Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir′e patterns resulted from rotational stacking faults were observed. At a bias lower than 200 mV, only one sublattice shows up in regions without moir′e patterns while both sublattices are seen in regions with moir′e pattens. This phenomenon can be used to identify AB stacked regions. The scattering characteristics at various types of step edges are different from those of monolayer graphene edges, either armchair or zigzag.  相似文献   

13.
In order to evaluate the influence of substitution at the central metal ion position in transition hexacyanometallates in some detail, the magnetic studies were carried out on a series of solid solutions of metal hexacyanometallates of the composition M[FeII(CN)6]1? x [CrIII(CN)6] x , where M?=?NiII and FeIII. The temperature and field dependences of magnetization were studied using a superconducting quantum interference device magnetometer. The field dependence of the samples at 5?K shows a hysteresis behaviour. For M?=?NiII, the transition temperature increases with increase in the substitution of low-spin Fe(III) by Cr(III) in the hexacyanometallate unit. The saturation magnetization was found to decrease with increase in the iron concentration. The observed variation in the magnetic properties, such as the value of T C and the nature of magnetic ordering, is attributed to the variation in the composition of the transition-metal ion in the coordination sphere of carbon. On the other hand, for M?=?FeIII, the transition temperature and saturation magnetization remained almost unchanged, indicating that substitution at the carbon coordination site did not produce any change in the magnetic interaction among the transition-metal ions through the cyanide ions.  相似文献   

14.
The diffusion coefficient of nickel in cold-worked carbon steel was determined with the diffusion couple method in the temperature range between 320 and 450 °C. Diffusion couple was prepared by electro-less nickel plating on the surface of a 20% cold-worked carbon steel. The growth in width of the interdiffusion zone was proportional to the square root of diffusion time to 12,000 h. The diffusion coefficient (DNi) of nickel in cold-worked carbon steel was determined by extrapolating the concentration-dependent interdiffusion coefficient to 0% of nickel. The temperature dependence of DNi is expressed by DNi = (4.5 + 5.7/?2.5) × 10?11 exp (?146 ± 4 kJ mol?1/RT) m2s?1. The value of DNi at 320 °C is four orders of magnitude higher than the lattice diffusion coefficient of nickel in iron. The activation energy 146 kJ mol?1 is 54% of the activation energy 270.4 kJ mol?1 for lattice diffusion of nickel in the ferromagnetic state iron.  相似文献   

15.
Impurity segregation at grain boundary(GB) can significantly affect the mechanical behaviors of polycrystalline metal. The effect of nickel impurity segregated at Cu GB on the deformation mechanism relating to loading direction is comprehensively studied by atomic simulation. The atomic structures and shear responses of Cu Σ9(114) 110 and Σ9(221) 110 symmetrical tilt grain boundary with different quantities of nickel segregation are analyzed. The results show that multiple accommodative evolutions involving GB gliding, GB shear-coupling migration, and dislocation gliding can be at play, where for the 2ˉ21ˉ shear of Σ9(114) 110 the segregated GBs tend to maintain their initial configurations and a segregated GB with a higher impurity concentration is more inclined to be a dislocation emission source while maintaining the high mechanical strength undergone plastic deformation for the 11ˉ4ˉ shear of Σ9(221) 110. It is found that the nickel segregated GB exerts a cohesion enhancement effect on Cu under deformation: strong nickel segregation increases the work of separation of GB, which is proved by the first-principles calculations.  相似文献   

16.
61Ni Mössbauer measurements have been performed at 4.2 K on spherical Ni particles with an average diameter of 100 and 30 Å, covered with a protective layer of SiO. Their spectra contain a surface component with a significantly reduced hyperfine magnetic field as compared with the field in the bulk. This result confirms recent theoretical predictions.  相似文献   

17.
We report lasing for the first time in nickel on the neon-like J=01, 3p3s transition at 231 Å as well as several weaker transitions including the J=2»1 lines at 298 Å and 304 Å. Amplification is seen only when the prepulse technique of using a low intensity prepulse before the main optical drive pulse is used to illuminate the nickel target. The prepulse technique is also shown to produce lasing in copper and dramatically improve the output of the germanium laser.  相似文献   

18.
Ultrafine crystals of chromium-substituted nickel ferrite were prepared by wet chemical co-precipitation method using sulphates of respective metal ions. Formation of these materials has been confirmed by X-ray powder diffraction method. The fine crystal nature of these materials is evidenced from scanning electron microscope (SEM). Cation distribution has been investigated using X-ray diffraction technique. Cation distribution indicates that chromium occupy octahedral site for all the values of composition x. The saturation magnetization and magneton number both are decreasing with increase of chromium concentration x. The decrease in saturation magnetization and magneton number is attributed to the substitution of the Cr3+ ions. Curie temperature (T C ) from susceptibility plot is found to decrease with Cr concentration x. Curie temperature of all the compositions are also obtained theoretically and it agrees with observed Curie temperature.  相似文献   

19.
The microstructure and optical properties of Ni-doped SnO2 nano-powders are studied in detail. By Ni-doping, not only the grain size reduces, but also the grain shape changes from nano-rods to spherical particles. The crystallization becomes better with annealing temperature increasing. The band gap energy decreases as nickel doping level increases. The sp-d hybridization and alloying effect due to amorphous SnO2-x phase should be responsible for the band gap narrowing effect. Nickel dopant does not change the photoluminescence (PL) peak positions.  相似文献   

20.
Nano-sized and well dispersed manganese oxide and nickel–manganese oxide (Ni–Mn–O) powders are synthesized via the hydrothermal route. The addition of nickel ions significantly affects the morphology, particle size and the electrochemical properties of the obtained powders. Adding nickel ions results in a significant change in the shape of the powders from rod-like to plate-like. The electrochemical analysis of the electrode reveals that the specific capacitance of the synthesized powders is greatly increased with the addition of nickel ions. When the hydrothermal temperature is increased to 125 °C, the specific capacitance also increases to 284 F/g and decreases by about 4% after 1500 cycles of charge and recharge. Ni–Mn–O is considered to be a promising material for the electrodes used in electrochemical capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号