首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motivated by the development of miscible nano-blends with supramolecularly organized structures, relying on intermolecular interactions, novel poly(methyl methacrylate) (PMMA)/aramid nano-blend system was designed. Aramid chains, obtained through the condensation of a mixture of 1,5-diaminonaphthalene and 1,3-phenylenediamine with terephthaloyl chloride, were incorporated in PMMA to form nano-structured blends via physical interlocking. Effect of polymer–polymer interactions on miscibility and macroscopic properties of blends were studied using tensile testing, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Tensile properties well indicated the mechanical compatibility resulting from good component cohesion via hydrogen bonding. DSC results also designated entirely miscible blends even at high aramid content. Morphological observations corroborated these findings as well, however, physical interaction of PMMA with varying aramid content efficiently altered blend morphology. Blends with 10, 20, 60 and 70 wt.% aramid possessed fine patterns owing to nano-level compatibility of two phases. Novel blends holding advanced properties can be potentially exploited to acquire exceptional performance in various technological applications such as nano-templates, nano-structured membranes, nano-devices, etc.  相似文献   

2.
The glass transition and the structural relaxation processes have been studied in blends of poly(methyl methacrylate) (PMMA) and styrene-acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt.% blend of PMMA with the SAN copolymer containing 30 wt.% of AN is immiscible, while blends with copolymers containing between 13 and 26 wt.% of AN are miscible. Thus the upper limit of miscibility is between 26 and 30 wt.% of AN. The temperature dependence of the relaxation times of the conformational rearrangements of polymer chains around the glass transition have been determined in the blends and pure components by modelling DSC thermograms obtained after different thermal histories in each sample. The slope in the Arrhenius diagram logτ vs 1/T around the glass transition temperature is significantly smaller in the blend which is closer to the upper limit of miscibility than in the other miscible blends in which SAN copolymer contains less AN. The change of slope can be ascribed to a distribution in the glass transition temperatures of the different rearranging regions, reflecting the appearance of a microheterogeneity in the blend that cannot be detected as a double glass transition in the blend.  相似文献   

3.
The aim of this paper is to study the miscibility and the thermal degradation of PVC/PMMA blends. For that purpose, blends of variable compositions from 0 to 100 wt% were prepared with and without plasticizer. Their physico-chemical characterization was carried out by differential scanning calorimetric analysis (DSC) and Fourier transform infrared spectroscopy (FTIR). Their thermal degradation under nitrogen at 185°C was studied and the HCl evolved from PVC was measured by the pH method. Degraded samples were characterized, after purification, by FTIR and UV-visible spectroscopy. The DSC analysis showed polymer miscibility up to 60 wt% of PMMA. This miscibility is due to a specific interaction of hydrogen bonding type between carbonyl groups (C=O) of PMMA and hydrogen from (CHCl) groups of PVC as evidenced by FTIR analysis. On the other hand, it was found that PMMA exerted a stabilizing effect on the thermal degradation of PVC by reducing the zip dehydrochlorination and by leading to the formation of short polyenes.  相似文献   

4.
The synthesis of a poly(diethylaminoethyl methacrylamide) (BP), based on a lineal methacrylamide with diethylaminoethyl branches was carried out. Thermal behavior was studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Relatively high thermal stability is found. Blends with poly(methylmethacrylate) (PMMA), poly(acrylic acid) (PAA) and poly(monomethyl itaconate) (PMMI) were prepared. Their thermal properties in blends were studied together with miscibility, in order to improve thermal properties of vinylic polymer blends. An increase of thermal stability was found for certain blend compositions. By FTIR analysis, higher band displacements were found for low BP compositions. AFM and molecular simulation analysis were carried out in order to elucidate the structural origin leading to thermal stability and miscibility increases. Hydrophobic interactions among methyl end groups of BP and methylene groups of vinylic polymers should be the responsible of miscibility and thermal stability increases.  相似文献   

5.
This study investigated and discovered a new miscible ternary blend system comprising three amorphous polymers: poly(vinyl acetate) (PVAc), poly(vinyl p‐phenol) (PVPh), and poly(methyl methacrylate) (PMMA) using thermal analysis and optical and scanning electron microscopies. The ternary compositions are largely miscible except for a small region of borderline ternary miscibility near the side, where the binary blends of PVAc/PMMA are originally of a borderline miscibility with broad Tg. In addition to the discovering miscibility in a new ternary blend, another objective of this study was to investigate whether the introduction of a third polymer component (PVPh) with hydrogen bonding capacity might disrupt or enhance the metastable miscibility between PVAc and PMMA. The PVPh component does not seem to exert any “bridging effect” to bring the mixture of PVAc and PMMA to a better state of miscibility; neither does the Δχ effect seem to disrupt the borderline miscible PVAc/PMMA blend into a phase‐separated system by introducing PVPh. Apparently, the ternary is able to remain in as a miscible state as the binary systems owing to the fact that PVPh is capable of maintaining roughly equal H‐bonding interactions with either PVAc or PMMA in the ternary mixtures to maintain balanced interactions among the ternary mixtures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1147–1160, 2006  相似文献   

6.
Summary: Thin films of high molecular weight PMMA, PVC and their blend were prepared with solution cast method. Further they were modified by adding Camphor Sulphonic Acid (CSA) to them. DSC studies indicate single glass transition temperature (Tg) for unmodified as well as modified blends indicating the miscibility of polymers. FTIR studies show the interaction between CSA-PVC, CSA-PMMA, CSA-(PVC+PMMA) blend. The D.C. electrical study was carried out at various temperatures from room temperature (307 K) to 373 K. After modification the variation of DC conductivity (σ) is found to decrease in PVC and the PVC-PMMA blend whereas it is found to increase in PMMA with rise in temperature.  相似文献   

7.
Compatibilization of the partially miscible poly(vinylidene fluoride) (PVDF)/poly(styrene-co-acrylonitrile) (SAN) pair by a third homopolymer, i.e., poly(methyl methacrylate) (PMMA), was investigated in relation to cross section morphology, crystallization behaviors and hydrophilicity of the polyblends. Scanning electron microscopy showed a more regular and homogeneous morphology when more than 15 wt.% PMMA was incorporated. The samples presented only α phase regardless of PMMA content in the blend. As the PMMA content increased in the blends, the interactions between each component were enhanced, and the crystallization of PVDF was limited, leading to a decreasing of the crystallinity and the crystallite thickness. Besides, the hydrophilicity of PVDF was further improved by PMMA addition. The sample containing 15 wt.% PMMA showed a more hydrophilic property due to the more polar part of surface tension induced by PMMA addition. Observed from the cross section of the blends, the miscibility of partially miscible PVDF/SAN blends were efficiently improved by PMMA incorporation.  相似文献   

8.
Computer simulations play an important role in designing new polymers as well as in predicting properties of existing polymers. In this paper, the blend compatibility of poly(vinyl alcohol) (PVA) with poly(methyl methacrylate) (PMMA) was studied over the wide range of compositions allowed by the atomistic and mesoscopic simulation methods. The Flory-Huggins interaction parameter, chi, of the blends computed using the atomistic simulation confirmed the blend compatibility for compositions containing >60 wt % of PVA. This observation was further supported by differential scanning calorimetric experiments. Solubility parameters of the polymers obtained from the simulation procedure were in good agreement with those of the literature data. Simulation results were further supported by the spectral and solution property measurements. From the atomistic simulations, chi versus concentration plots were constructed, which showed trends similar to those experimentally measured melting temperature versus concentration. The chi values for the blends, which satisfied the criteria of miscibility of two polymers by the atomistic simulation, agreed quite well with the solubility criteria related to order parameters calculated from the mesoscopic simulation. Kinetics of phase separation was examined via density profiles calculated using the MesoDyn approach for incompatible blends. The length and time scales spanned by these simulations were found to be relevant to the real application scales. The free energy computed in the mesoscopic simulation for blends reached equilibrium, particularly when the simulation was performed at a higher time step, indicating the stability of the blend system at certain compositions.  相似文献   

9.
10.
The IR spectroscopy study shows miscibility between PMMA-PVC blends due to hydrogen bonding between CO of PMMA and hydrogen from CHCl of PVC. This blend system is doped by Camphor Sulphonic Acid (CSA) in the entire composition range. The doping of CSA in PVC, in PMMA and in PMMA-PVC blends shows changes in FTIR spectra. The interaction between PVC and CSA is through hydrogen bonding between CO of CSA and CHCl of PVC. Doping PMMA with CSA, indicate an interaction between H+ ion of CSA and oxygen atoms of CO and  OCH3 of PMMA. Whereas in PMMA–PVC blend interaction between H+ ion of CSA and oxygen atom of CO of PMMA.  相似文献   

11.
Conjugated polyanilines bearing long alkyl side chains (dodecyl PANi-12 and octadecyl PANi-18) were prepared for the purpose of obtaining well-mixed conducting polymer blends with insulating flexible polymers. The miscibility of the polyanilines and ethylene-co-vinyl acetate copolymers (EV A20 with 20 wt % of vinyl acetate and EV A70 with 70 wt %) was significantly improved by long alkyl chains of the same hydrocarbon moieties as the ethylene segments in the matrix EV A, as demonstrated by microscopic observation. PANi-18/EV A20 blends exhibit a lower critical phase separation temperature (LCST). In addition, the EV A crystallinity and the side-chain crystallinity in the miscible blends were depressed, as shown by thermal analysis and x-ray scattering. The comparison of three designed blend systems indicates that the miscibility of the polymers is determined by the hydrophobic interaction between the hydrocarbon units in the both components and by the hydrogen bonding. The solvatochromic phenomena for the blends at low miscible PANi compositions was detected by UV-visible spectroscopy. The threshold conductivities exhibit sensitivity to the morphological structure of the polymeric blends, and was lowered by improved homogenous dispersion of the conducting phase. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
The aim of this work is to study the structure-properties relationship of rigid and plasticized PVC/PMMA blends. For that purpose, blends of variable compositions were prepared in the absence and in the presence of a plasticizer di (ethyl-2 hexyl) phtalate or DEHP. The miscibility of the two polymers was investigated by differential scanning calorimetric analysis (DSC) and Fourier transform infrared spectroscopy. The weight loss from 30 to 600°C was investigated by thermogravimetric analysis (TGA). The thermal degradation under nitrogen at 185°C was studied and the amount of HCl released from PVC was measured by the pH method. Furthermore, the variation of mechanical properties such as tensile behavior, hardness and impact resistance was investigated for all blend compositions.  相似文献   

13.
Four poly(butylene adipate) (PBA) polyesters, the structure ranging from linear to highly branched, were synthesized and solution casted with poly(vinyl chloride) (PVC) in 20 or 40 wt % concentrations to evaluate the influence of polyester chain architecture on miscibility, surface segregation, and mechanical properties. The miscibility of PVC and polyesters is based on specific interactions between the carbonyl group in the polyester and PVC. These interactions cause a shift in the carbonyl absorption band in the FTIR spectra. The shifting of the carbonyl absorption band was more significant for all the 40 wt % blends compared with the blends containing 20 wt % of the same polyester. In the 20 wt % blends surface segregation and enrichment of polyester at the blend surface increased as a function of branching. However, all the films containing 40 wt % of polyester had similar surface composition. This is explained by better miscibility and stronger intermolecular interactions in the 40 wt % blends, which counteract the effect of branching on the surface segregation. High degree of branching resulted in poor miscibility with PVC and poor mechanical properties. A linear or slightly branched polyester structure, however, resulted in good miscibility and desirable blend properties. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1552–1563, 2007  相似文献   

14.
Miscibility of blends consisting of poly(vinyl methyl ether) (PVME) and poly(styreneco-2-vinylnaphthalene) [P(S-co-2VN)] was investigated by means of Fourier transform infrared (FT-IR) spectroscopy and thermal analysis. Copolymers containing 21, 51, and 84 wt % of styrene were synthesized by radical polymerization. Based on optical clarity and glass transition temperatures, it was shown that the miscibility in P(S-co-2VN)/PVME blends is largely affected by compositions of the copolymers as well as concentrations of the blend. From the FT-IR results, the relative intensity at 1100 cm?1 peak of COCH3 band of PVME and the position of naphthyl ring of 2VN were sensitive to the miscibility of the blends. It was observed that blends of PVME with P(S-co-2VN) of 84 wt % styrene or P(S-co-2VN) of 51 wt % styrene are miscible over the entire concentration ranges of the blends. Blends of PVME with P(S-co-2VN) containing 21 wt % of styrene are immiscible below 65 wt % PVME. In the miscible P(S-co-2VN)/PVME blends, there was observed a large shift in the naphthyl frequency at a characteristic wavelength of 748 cm?1. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
 This paper deals with the miscibility of polyvinyl chloride (PVC) with polymethyl methacrylate (PMMA). Blends of variable compositions from 0 to 100 wt% were prepared in the presence (15, 30 and 50 wt%) and in the absence of di ethyl- 2 hexyl phtalate as plasticizer. Their miscibility was investigated by using various analytical methods: determination of the Vicat softening temperature, a viscometry method based on the criterion of polymer–polymer miscibility, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The results show that the plot of Vicat temperature against composition is a continuous curve, indicating the miscibility of the blend. The viscometry method and DSC find that the two polymers are miscible up to about 60 wt% of PMMA. This miscibility is due to a specific interaction of hydrogen bonding type between carbonyl groups (C=O) of PMMA and hydrogen from (CHCl) groups of PVC, as evidenced by FTIR spectroscopy. The two-band deconvolution shows an increase in associated groups percentage in the domain of miscibility.  相似文献   

16.
An investigation of the miscibility behaviour in polystyrene/ polymethyl methacrylate (PS/PMMA) blends of various compositions under different evaporations protocols using Fourier transform infrared (FT-IR) and Raman Spectroscopic techniques took place in the study. Solvent selection and evaporation rates, coupled with variations in the blend composition resulted in completely different miscibility behaviour for these systems. In particular, it was found that blends with low PMMA content result in systems that exhibit PMMA domains of less than 7 microns on average. Finally, depth profiling studies of the PMMA moiety in the PS matrix show that the distribution of the low content phase is highly affected by the solvent selection as well as the blend composition.  相似文献   

17.
The miscibility of polycarbonate (PC) with poly(methyl methacrylate-co-cyclohexyl methacrylate) (PMCHM) and with poly(methyl methacrylate) (PMMA) was studied by nuclear magnetic resonance (NMR) 1H spin-lattice relaxation time in the rotating frame (1H T1p), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). A blend of PC/PMCHM (50/50 wt/wt) with the acrylic component PMCHM, a copolymer of PMMA and poly(cyclohexyl methacrylate) (80/20 wt/wt), shows only one T1p value, which indicates high miscibility in this blend. A blend of PC/PMMA (50/50 wt/wt) shows two 1H T1p values, which are similar to those of the homopolymers PC and PMMA. These results indicate high immiscibility. The “domain size” calculated from NMR results of the miscible blend PC/PMCHM is approximately 40 Å. The results of DSC and TEM are similar to the NMR results. However, TEM results show the presence of 3% PC domains in the PC/PMCHM blend, which are not seen by NMR or DSC. Those PC domains are approximately 500 Å. A strong intramolecular repulsion in the copolymer PMCHM and specific intermolecular interactions between PC and PMMA may explain the miscibility in the PC/PMCHM system. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
The miscibility behavior of poly(2‐ethyl‐2‐oxazoline) (PEOx)/poly(vinyl phenyl ketone hydrogenated) (PVPhKH) blends was studied for the entire range of compositions. Differential scanning calorimetry and thermomechanical analysis measurements showed that all the PEOx/PVPhKH blends studied had a single glass‐transition temperature (Tg). The natural tendency of PVPhKH to self‐associate through hydrogen bonding was modified by the presence of PEOx. Partial IR spectra of these blends suggested that amide groups in PEOx and hydroxyl groups in PVPhKH interacted through hydrogen bonding. This physical interaction had a positive influence on the phase behavior of PEOx/PVPhKH blends. The Kwei equation for Tg as a function of the blend composition was satisfactorily used to describe the experimental data. Pure‐component pressure–volume–temperature data were also reported for both PEOx and PVPhKH. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 636–645, 2004  相似文献   

19.
The degradation of blends of PVA and PMMA in the form of films cast from a common solution of the polymers has been studied by TVA, TG, and EGA (evolved gas analysis) for acetic acid. Volatile degradation products have been characterized by spectroscopic and GLC techniques. Molecular weight, spectral and thermal stability changes in PMMA extracted from partially degraded blends have been examined. These blends behave in a closely analogous manner to PVC-PMMA blends already investigated. The results suggest that the PMMA component of the heterogeneous blends is modified in two ways: (1) in a destabilization reaction series initiated by attack of acetate radicals generated in the PVA phase which migrate into the PMMA phase, and (2) in a stabilization reaction involving conversion of ester side groups to acid and subsequently to anhydride ring structures which act as blocking points for depolymerization. The rate of acetic acid production in the blend is less than in PVA degraded alone. The mechanism of degradation of PVA is reconsidered in the light of these results.  相似文献   

20.
Blends of amorphous poly(DL‐lactide) (DL‐PLA) and crystalline poly(L‐lactide) (PLLA) with poly(methyl methacrylate) (PMMA) were prepared by both solution/precipitation and solution‐casting film methods. The miscibility, crystallization behavior, and component interaction of these blends were examined by differential scanning calorimetry. Only one glass‐transition temperature (Tg) was found in the DL‐PLA/PMMA solution/precipitation blends, indicating miscibility in this system. Two isolated Tg's appeared in the DL‐PLA/PMMA solution‐casting film blends, suggesting two segregated phases in the blend system, but evidence showed that two components were partially miscible. In the PLLA/PMMA blend, the crystallization of PLLA was greatly restricted by amorphous PMMA. Once the thermal history of the blend was destroyed, PLLA and PMMA were miscible. The Tg composition relationship for both DL‐PLA/PMMA and PLLA/PMMA miscible systems obeyed the Gordon–Taylor equation. Experiment results indicated that there is no more favorable trend of DL‐PLA to form miscible blends with PMMA than PLLA when PLLA is in the amorphous state. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 23–30, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号