首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
The problem of the motion of a disc on an inclined plane with dry friction is investigated. It is shown that, if the friction coefficient is greater than the slope of the plane, the disk will come to rest after a certain finite time, and its sliding and rotation will cease simultaneously. The limit position of the instantaneous centre of velocities is indicated. The limit motions of the disc in the case when the ratio of the friction coefficient to the slope of the plane is equal to or less than unity: uniform sliding (in the case of a general position) and equiaccelerated sliding (always) of the disc along the line of greatest slope of the plane, respectively, are obtained. The case when the friction coefficient is equal to the slope, while the initial sliding velocity is directed upwards along the line of greatest slope, is an exception. In this case, the disc comes to rest after a finite time, and the sliding velocity and the angular velocity of the disc vanish simultaneously.  相似文献   

2.
The branching of the steady motions of a heavy circular disc on an absolutely rough horizontal plane is investigated. The motions corresponding to critical points of the energy integral at fixed levels of two other integrals having the form of hypergeometric series are considered.  相似文献   

3.
The motion of a spherical pendulum whose point of suspension performs high-frequency vertical harmonic oscillations of small amplitude is investigated. It is shown that two types of motion of the pendulum exist when it performs high-frequency oscillations close to conical motions, for which the pendulum makes a constant angle with the vertical and rotates around it with constant angular velocity. For the motions of the first and second types the centre of gravity of the pendulum is situated below and above the point of suspension, respectively. A bifurcation curve is obtained, which divides the plane of the parameters of the problem into two regions. In one of these only the first type of motion can exist, while in the other, in addition to the first type of motion, there are two motions of the second type. The problem of the stability of these motion of the pendulum, close to conical, is solved. It is shown that the first type of motion is stable, while of the second type of motion, only the motion with the higher position of the centre of gravity is stable.  相似文献   

4.
For a Chaplygin sleigh on a plane, which is a paradigmatic system of nonholonomic mechanics, we consider dynamics driven by periodic pulses of supplied torque depending on the instant spatial orientation of the sleigh. Additionally, we assume that a weak viscous force and moment affect the sleigh in time intervals between the pulses to provide sustained modes of the motion associated with attractors in the reduced three-dimensional phase space (velocity, angular velocity, rotation angle). The developed discrete version of the problem of the Chaplygin sleigh is an analog of the classical Chirikov map appropriate for the nonholonomic situation. We demonstrate numerically, discuss and classify dynamical regimes depending on the parameters, including regular motions and diffusive-like random walks associated, respectively, with regular and chaotic attractors in the reduced momentum dynamical equations.  相似文献   

5.
6.
对于圆球在粗糙水平面上的运动,在文[1]中,作者忽略了章动,得到了近似解析解。本文在此基础上给出了有章动情况下的控制方程。通过求解这些方程,证明文[1]关于接触点速度的结论在有章动时仍然正确。还得到其它一些有趣的结果,例如:球心和接触点的速度与球的自转角速度和章动角速度有一定联系;球心和接触点的速度的方向具有不变性。在进一步假设微弱章动的情况下,文中得到近似解析解,从而证明文[1]结果的正确性。  相似文献   

7.
The problem of the motion of a rigid body possessing a plane of symmetry over the surface of a three-dimensional sphere under the action of a spherical analogue of Newtonian gravitation forces is considered. Approaches to introducing spherical analogues of the concepts of centre of mass and centre of gravity are discussed. The spherical analogue of “satellite approach” in the problem of the motion of a rigid body in a central field, which arises on the assumption that the dimensions of the body are small compared with the distance to the gravitating centre, is studied. Within the framework of satellite approach, assuming plane motion of the body, the question of the existence and stability of steady motions is investigated. A spherical analogue of the equation of the plane oscillations of a body in an elliptic orbit is derived.  相似文献   

8.
The classical mechanical problem about the motion of a heavy rigid body on a horizontal plane is considered within the framework of theory of systems with unilateral constraints. Under general assumptions about the character of friction, we examine the question on the possibility of detachment of the body from the plane under the action of reaction of the plane and forces of inertia. For systems with rolling, we find new scenarios of the appearing of motions with jumps and impacts. The results obtained are applied to the study of stationary motions of a disk. We have showed the following.
1)  In the absence of friction, the detachment conditions on stationary motions do not hold. However, if the angle θ between the symmetry axis and the vertical decreases to zero, motions close to stationary motions are necessarily accompanied by detachments.
2)  The same conclusion holds for a thin disk that rolls on the support without sliding.
3)  For a disk of nonzero thickness in the absence of sliding, the detachment conditions hold on stationary motions in some domain in the space of parameters; in this case, the angle θ is not less than 49 degrees. For small values of θ, the contact between the body and the support does not break in a neighborhood of stationary motions.
  相似文献   

9.
The problem of the motion of a heavy rigid body, supported on a rough horizontal plane at three of its points, is considered. The contacts at the support points are assumed to be unilateral and subject to the law of dry (Coulomb) friction. The dynamics of possible motions of such a body under the action of gravity forces and dry friction is investigated. In the case of a plane body, it is possible to obtain particular integrals of the equations of motion.  相似文献   

10.
The problem of the motion of an autonomous two-degree-of-freedom Hamiltonian system in the neighbourhood of its equilibrium position is considered. It is assumed that the characteristic equation of the linearized system has a pair of pure imaginary roots. The roots of the other pair are assumed to be close to or equal to zero, and in the latter case non-simple elementary dividers correspond to these roots. The problem of the existence, bifurcations and orbital stability of families of periodic motions, generated from the equilibrium position, is solved. Conditionally periodic motions are analysed. The problem of the boundedness of the trajectories of the system in the neighbourhood of the equilibrium position in the case when it is Lyapunov unstable, is considered. Non-linear oscillations of an artificial satellite in the region of its steady rotation around the normal to the orbit plane are investigated as an application.  相似文献   

11.
Controlled periodic motions of a planar two-link robot in a horizontal plane when there is dry friction are considered. The two-link is controlled by means of an internal torque applied to the joint connecting the links. The dynamics of the two-link, taking into account the influence of friction forces and the constrained nature of the control torque, is analysed assuming that the angle between the links is small. The conventional locomotion algorithm of a two-link is modified to ensure rectilinear displacement of the two-link. The influence of various geometrical and mechanical parameters of the system on the average rate of locomotion and on the power consumption during the motion of the two-link robot in a plane is investigated.  相似文献   

12.
A controlled three-body system on a horizontal plane with dry friction is considered. The interaction forces between each pair of bodies are controls that are not subject to prior constraints but must be chosen in such a way that the motions of the system generated by them are quasistatic, that is, the total force acting on each of the bodies must be close to zero. All motions in which one body moves and the other two are fixed are found in the class of quasistatic motions. The problem of the optimal displacement of a moving body between two specified positions on a plane such that the absolute magnitude of the work of the friction forces along the trajectory is a minimum is solved. The quasistatic controllability of a three-body system is demonstrated and algorithms for bringing it into a specified position are discussed. The system considered simulates a mobile robot consisting of three bodies between which control forces act that can be realized by linear motors. The sizes of the bodies are assumed to be negligibly small compared with the distances between them so that the bodies are treated as particles.  相似文献   

13.
The problem of the existence, branching and stability of the steady motions of a system of two elastically coupled bodies in a central gravitational field is considered. Each body is simulated by a weightless rod with point masses at opposite ends. It is assumed that the rods are essentially attached at their mass centres, and the composite body is moving in a plane containing the attracting centre. Both trivial and non-trivial steady motions are studied, on the assumption that none of the principal axes of inertia of the body coincides with the radius vector of the centre of mass or with a tangent to the orbit; it is also assumed that the rods are not orthogonal to one another. The stability of all steady motions is fully investigated and an atlas of bifurcation diagrams presented.  相似文献   

14.
The stability conditions of the steady motions of a heavy spheroid on a plane with viscous friction are analysed. A geometrical interpretation of the results is given. The results are compared with the corresponding results in the case of an absolutely smooth and absolutely rough surface. The unsteady motions of the spheroid are investigated numerically.  相似文献   

15.
The motion of a satellite, i.e., a rigid body, about to the centre of mass under the action of the gravitational moments of a central Newtonian gravitational field in an elliptical orbit of arbitrary eccentricity is investigated. It is assumed that the satellite is almost dynamically symmetrical. Plane periodic motions for which the ratio of the average value of the absolute angular velocity of the satellite to the average motion of its centre of mass is equal to 3/2 (Mercury-type resonance) are examined. An analytic solution of the non-linear problem of the existence of such motions and their stability to plane perturbations is given. In the special case in which the central ellipsoid of inertia of the satellite is almost spherical, the stability to spatial perturbations is also examined, but only in a linear approximation. ©2008.  相似文献   

16.
The problem of stabilizing the equilibrium of a robot placed on a cylinder which can roll along a horizontal plane is investigated. There is no slip in any of the external contacts. Control is achieved by means of the electromechanical angular acceleration of a flywheel on the robot. Steady motions are studied. The basic procedures for stabilizing the robot in a vertical position are analysed in a non-linear formulation. It is shown that the corresponding linear system is completely controllable. A coordinate and velocity controller with saturation is constructed. The domain in which the system can be stabilized is found in connection with the boundedness of the control function. The effect of measurement errors is examined. The control characteristics are calculated for certain actual robot parameters.  相似文献   

17.
A theory of the symmetric periodic motions (SPMs) of a reversible second-order system is presented which covers both oscillations and rotations. The structural stability property of the generating autonomous reversible system, which lies in the fact that the presence or absence of SPMs in a perturbed system is independent of the actual form of the “reversible” perturbations, is established. Both the case of the generation of SPMs from the family of SPMs of the generating system and birth cycle from the equilibrium state are investigated. Criteria of Lyapunov stability in a non-degenerate situation are obtained for the SPMs which are generated (in case of small values of the parameter). A method is proposed for constructing and investigating the Lyapunov stability of all the SPMs. The conditions for the existence of a cycle (symmetric and asymmetric) in the neighbourhood of a support “almost” resonance SPM are established for all cases of resonances. The theoretical results are applied to a study of the motion of a particle along a straight line which passes through the centre of mass of the system perpendicular to the plane of the identical attracting and simultaneously radiating main bodies (an extension of the Sitnikov problem) in the photogravitational version of the three-body problem. The circular problem is analysed and two different series of families of SPMs are found in the weakly elliptic problem. The instability of the equilibrium state is proved in the case of parametric resonance and the stability (and instability) domains are distinguished for arbitrary values of the eccentricity. All the SPMs with a period of 2π are constructed and the property of Lyapunov stability is investigated for these motions.  相似文献   

18.
The problem of the motion of a gyroscope in a central force field is considered. It is assumed that the principal central moments of inertia of the gyrostat are equal to one another, while the centre of mass moves in a circular orbit in a plane passing through the attracting centre. The steady motions of the gyrostat and their stability are investigated. The case when the mass distribution allows of the symmetry group of a tetrahedron is considered as an example.  相似文献   

19.
A tyre design consisting of a steel-cord-reinforced rigid bond with sides connected to the wheel disc and a protector(tread) in contact with the road is examined. The tread is in the form of a set of rods connected by one end to the band, with the other end either free or in contact with the road. The rod end in contact with the road is acted upon by a force applied from the road, represented by a force normal to the road plane and a shear force due to dry friction. If the modulus of the shear force does not exceed the magnitude of the normal force multiplied by the dry friction coefficient, there is no slip at the contact point. In the opposite case, the rod end will be displaced along the road by an amount sufficient to distribute the normal and shear forces. The dynamics of longitudinal and transverse strains of the rods in contact with the road is analysed using the motion separation method in the quasi-static approximation. The behaviour of the tread rods as a function of the vertical displacement of the wheel centre is investigated, the contact area is found and the conditions are determined under which the contact area is divided into parts in which either slip of the rod ends occurs or does not occur, depending on the magnitude of the longitudinal displacement of the wheel centre or its turning relative to the horizontal axis. An analogue of a continuous model of a rod-like tread is considered, and the magnitudes of the forces and moments are found as a function of the wheel disc displacements. The equations of wheel rolling are obtained, and the conditions under which steady motions exist are found.  相似文献   

20.
Yu Jiang  Peter Eberhard 《PAMM》2006,6(1):97-98
This study deals with the impact of a rotating disc elastically striking a strip. We establish an experimental setup including a disc with a throwing machine controlled by a dSPACE-Autobox to generate the translational and rotational motions of the disc, a properly fixed strip and a high-speed digital camera system with an image processing package to capture kinematical data of the disc. The effects of strip flexibility and disc initial normal velocity before impact are investigated in detail. For interpreting the experimental results a hybrid impact model is developed which can provide not only generally good predictions compared with measurements but also some insight into the influences of strip flexibility and disc initial motions. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号