首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present paper, the synthesis of new pyridine bis(imine) ligands modified with halogens (Cl, Br, CF3) or alkyl groups (Heptyl, tert-butyl, Phenyl, …) is reported. When coordinated with iron or cobalt dichloride, they yielded complexes which were associated to methylaluminoxane (MAO) to achieve the polymerization of ethylene. It was shown that cobalt catalysts are generally more sensitive to the ligand substitutions than the iron ones. The addition of a chlorine atom on the ligand frame is generally unfavorable. On the contrary, the presence of a bromine atom seems more favorable. Phenyl rings lead to almost completely inactive catalysts, probably because of a too weak coordination to the metal. It was also demonstrated that a mono-substitution of the aryl groups with an electron-withdrawing group (-CF3) is sufficient to yield polymers, whereas, considering the bulkiness of this substituent only, oligomers would have been expected.  相似文献   

2.
Oxidation of Cr[N(SiMe(3))(2)](2)(THF)(2) with iodine and dicumyl peroxide results in tetrahedral Cr(iv) Cr[N(SiMe(3))(2)](2)I(2) and trigonal planar Cr(iii) Cr[N(SiMe(3))(2)](OCMe(2)Ph)(2), respectively; both complexes have been characterised by single-crystal X-ray diffraction, and both are active for ethylene polymerisation with alkylaluminium co-catalysts.  相似文献   

3.
Studies on cobalt ethylene polymerisation catalysts bearing bis(imino)pyridine ligands strongly indicate that the activated species is not the anticipated cobalt(II) alkyl cation.  相似文献   

4.
Cr(III) complexes of tridendate imine and amine ligands with N, P, O, S donor atoms 1 and 2 have been prepared and tested as catalysts in the oligomerisation and polymerisation of ethylene giving excellent selectivity towards 1-hexene and polymerisation to polyethylene when activated with cocatalysts. X-ray structure analyses of the precatalysts 1a-c, 1i, and 2b are investigated. The metal-ligand binding in 1a and 1b is nearly the same, which leads to similar catalytic activities of these precatalysts.  相似文献   

5.
The kinetics of ethylene polymerization on six methylalumoxane-activated self-immobilizing bis(phenoxy imine) complexes of titanium chloride with allyloxy groups in the m- and p-positions of the N-phenyl ring and with various substituents in the salicylaldehyde fragment was studied. The activity of the complexes in the temperature range 20–60°C and ethylene pressure of 0.4 MPa was evaluated.  相似文献   

6.
The homoleptic bis(dithiolene) complexes [M(S(2)C(2)R(2))(2)](2) (M = Fe, Co; R = p-anisyl) undergo two successive reductions to form anions that display [M(S(2)C(2)R(2))(2)](2)(2-) <--> 2[M(S(2)C(2)R(2))(2)](1-) solution equilibria. The neutral dimers react with Ph3P to form square pyramidal [M(Ph(3)P)(S(2)C(2)R(2))(2)](0). Voltammetric measurements upon [M(Ph(3)P)(S(2)C(2)R(2))(2)](0) in CH(2)Cl(2) reveal only irreversible features at negative potentials, consistent with Ph(3)P dissociation upon reduction. Dissociation and reassociation of Ph(3)P from and to [Fe(Ph(3)P)(S(2)C(2)R(2))(2)](0) is demonstrated by spectroelectrochemical measurements. These collective observations form the basis for a cycle of reversible, electrochemically controlled binding of Ph(3)P to [M(S(2)C(2)R(2))(2)](2) (M = Fe, Co; R = p-anisyl). All members of the cycle ([M(S(2)C(2)R(2))(2)](2)(0), [M(S(2)C(2)R(2))(2)](2)(1-), [MM(S(2)C(2)R(2))(2)](2)(2-), [M(S(2)C(2)R(2))(2)](1-), [M(Ph(3)P)(S(2)C(2)R(2))(2)]) for M = Fe, Co have been characterized by crystallography. Square planar [Fe(S(2)C(2)R(2))(2)](1-) is the first such iron dithiolene species to be structurally identified and reveals Fe-S bond distances of 2.172(1) and 2.179(1) Angstrom, which are appreciably shorter than those in corresponding square planar dianions.  相似文献   

7.
A series of bis(thiazolinyl)- and bis(thiazolyl)pyridine Thio-Pybox ligands and their metal complexes of chromium(III), iron(II), cobalt(II) and nickel(II) has been prepared, as well as a nickel(II) complex containing a monoanionic bis(thiazolinyl)phenyl Thio-Phebox ligand. These new metal complexes have been characterised and used as catalysts, in combination with the co-catalyst MAO, for the polymerisation of ethylene and for the polymerisation of butadiene. In the case of ethylene polymerisation, the Thio-Pybox and Thio-Phebox metal complexes have shown relatively low polymerisation activities, much lower compared to the related bis(imino)pyridine complexes of the same metals. In the polymerisation of butadiene, several Thio-Pybox cobalt(II) complexes show very high activities, significantly higher than the other metal complexes with the same ligand. It is the metal, rather than the ligand, that appears to have the most profound effect on the catalytic activity in butadiene polymerisation, unlike in the polymerisation of ethylene, where bis(imino)pyridine ligands provide highly active catalysts for a range of 1st row transition metals.  相似文献   

8.
刘树堂  Honrath  U 《化学学报》1985,43(1):30-34
在THF 中反应, 合成了以有机膦作μ3-配位体的新型铁钴三核原子簇羰基氢化物HFe2Co(CO)9PR.又用高压法合成FeCo2(CO)2Se, 它与Na2[Fe(CO)4] 在THE 中反应, 得到另一个以硒作μ3-配位体的新型铁钴三核原子簇羰基氢化物式电离成-价阴离子, 再与反应生成  相似文献   

9.
Enantiopure C(1)-symmetric bis(imino)pyridine cobalt chloride, methyl, hydride, and cyclometalated complexes have been synthesized and characterized. These complexes are active as catalysts for the enantioselective hydrogenation of geminal-disubstituted olefins.  相似文献   

10.
11.
The synthesis of modified neutral bis-NHI (NHI is N-heterocyclic imine) ligands and their application for the stabilization of tetryliumylidenes are reported. The ligands’ scaffolding consists of either saturated or methylated imidazoline backbones, and the bridge alternated from flexible ethylene to more rigid o-phenylene. Transmetalation reactivity of the cationic SnII compounds was tested towards LiAlH4 and IDipp→SiCl2 [IDipp is 1,3-bis(2,6-diisopropyl- phenyl)imidazol-2-ylidene] affording the respective aluminium and silicon complexes.  相似文献   

12.
The number of active centers C p in the homogeneous complexes LCoCl2 and LVCl3 (L = 2,6-(2,6-R2C6H3N=CMe)2C5H3N; R = Me, Et, t Bu) and the propagation rate constants k p have been determined by the radioactive 14CO quenching of ethylene polymerization on these complexes in the presence of the methylaluminoxane (MAO) activator. For the systems studied, a significant portion of the initial complex (up to 70%) transforms into polymerization-active centers. The catalysts based on the cobalt complexes are single-site, and the constant k p in these systems is independent of the volume of substituent R in the ligand, being (2.4?3.5) × 103 L mol?1 s?1 at 35°C. The much larger molecular weight of the polymer formed on the complex with the tert-butyl substituent in the aryl rings of the ligand compared to the product formed on the complex with the methyl substituent is due to the substantial (~11-fold) decrease in the rate constant of chain transfer to the monomer. At the early stages of the reaction (before 5 min), the vanadium complexes contain active centers of one type only, for which k p = 2.6 × 103 L mol?1 s?1 at 35°C. An increase in the polymerization time to 20 min results in the appearance, in the vanadium systems, of new, substantially less reactive centers on which high-molecular-weight polyethylene forms. The number of active centers C p in the 2,5-tBu2LCoCl2 and 2,6-Et2LVCl3 systems with the MAO activator increases as the polymerization temperature is raised from 25 to 60°C. The activation energies of the chain propagation reaction (E p) have been calculated. The value of E p for complex 2,5-tBu2LCoCl2 is 4.5 kcal/mol. It is assumed that the so-called “dormant” centers form in ethylene polymerization on the 2,6-Et2LVCl3 complex, and their proportion increases with a decrease in the polymerization temperature. Probably, the anomalously high value E p = 14.2 kcal/mol for the vanadium system is explained by the formation of these “dormant” centers.  相似文献   

13.
2,6‐Bis(imino)pyridyl complexes of Fe and Co in combination with methylalumoxane form very active homogeneous catalytic systems for polymerization of ethylene. GPC analysis of the polymers prepared with the complexes indicates that the Co complexes produce single‐center catalysts whereas the Fe complexes produce catalysts with numerous types of active centers. Different centers in the latter catalyst systems respond differently to reaction conditions such as the reaction duration, the [MAO]:[Fe] ratio, the ethylene concentration, etc. The article examines the effects of reaction variables on the performance of both types of catalysts and proposes an explanation for the complex behavior of the catalysts derived from the Fe complexes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6159–6170, 2006  相似文献   

14.
A series of 2-(1-aryliminoethylidene)quinolines (L) were synthesized and used as bidentate N^N ligands in coordinating with metal (cobalt and iron) chlorides to form complexes of the type LMCl2, cobalt(II) (Co1-Co5) and iron(II) (Fe1-Fe5). All organic compounds and metal complexes were fully characterized, and the molecular structures of the representative complexes Co3·DMF and Fe4·DMF were confirmed as distorted bipyramidal geometry at the metal by single-crystal X-ray diffraction. Upon activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO) under 10 atm ethylene, all complexes showed high activities in ethylene dimerization with activities of up to 1.82 × 106 g mol−1 (Co) h−1 and 5.89 × 105 g mol−1 (Fe) h−1, respectively.  相似文献   

15.
The polymerization of ethylene initiated by SiO2-supported two-component catalytic systems based on 2,6-bis[1-(2,4-dimethyl-6-cyclohexylphenylimino)ethyl]pyridine iron (II) chloride (I) and 1,2-bis(2-cyclohexyl-4,6-dimethylphenylimino)acenaphthene] nickel bromide (II) was studied. Methylaluminoxane was used as a cocatalyst during support. It was shown that the activity of two-component catalytic systems and the molecular mass and short-chain branching of polyethylene samples depend on the supporting procedure: simultaneous immobilization of components I and II, separate immobilization of components on the support (first I, then II, and vice versa), and the use of a mixture of components I and II immobilized separately on SiO2.  相似文献   

16.
Visible light irradiation of the [(η-C6H7)Fe(η-C6H6)]+ cation (1) in CH2Cl2 in the presence of alkyl-substituted benzenes results in arene exchange forming the [(η5-C6H7)Fe(η-C6R6)]+ cations (2a–d: C6R6 is toluene, p-xylene, mesitylene, and durene). The mixed bis(arene) [(η-C6H6)Fe(η-C6R6)]2+ iron complexes (3a–d) were synthesized by hydride ion abstraction from 2a–d by [Ph3C]+. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1864–1865, September, 2007.  相似文献   

17.
18.
The reaction of Sm{N(SiMe3)2}3 with the bis(phenol)amines H2O2N(R) (H2O2N(R) = RCH2CH2N(2-HO-3,5-C6H2(t)Bu2)2; R = OMe, NMe2 or Me) gave exclusively zwitterions Sm(O2N(R))(HO2N(R)). For R = OMe or NMe2 these were efficient catalysts for the ring-opening polymerisation of epsilon-caprolactone and D,L-lactide with a tendency to form cyclic esters; in contrast, no polymerisation was observed for R = Me.  相似文献   

19.
Summary A hydroxocobalt(III) complex (1a), has been obtained by reaction of bis(dehydroacetato)ethylenediimine (H2dhaen) with cobalt(II) hydroxide or acetate in the presence of air. Addition of a second complexing agent leads to the formation of a series of mixed-ligand complexes (2)-(26) having either the trans- or cis- configuration. In the cis- complexes, the quadridentate ligand dhaen adopts a nonplanar conformation. Configurations are distinguishable from characteristic differences in the electronic and n.m.r. spectra.  相似文献   

20.
A catalyst system composed of a 2,6-bis(arylimino)pyridineiron(II) dichloride complex and methylaluminoxane is found to be extremely active for acetylene polymerisation. The formation of poly(acetylene) gels and surface films occurs at very low catalyst concentrations, around three orders of magnitude lower than traditional catalyst systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号