首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of bulk free‐radical polymerizations of n‐butyl methacrylate (n‐BMA), iso‐butyl methacrylate (i‐BMA), and tert‐butyl methacrylate (t‐BMA) are studied by differential scanning calorimetry and with the aid of a mathematical model previously reported by the authors. In all the cases, the rate of polymerization (Rp) evolution curve exhibits a minimum at low conversions and the characteristic maximum of the autoacceleration effect. It is found that the monomer conversion xmin at which the minimum is observed, follows the order n‐BMA > i‐BMA > t‐BMA and that for monomer conversions (x) smaller than xmin, the termination rate coefficient (kt) shows a plateau. According to the model results it is obtained that for x > xmin, the termination reaction is chemically controlled whereas for x > xmin, it is diffusion‐controlled and that the xmin values are related to the value of the termination rate coefficient of the chemical step (kt0) of every isomer, which is highly influenced by the steric hindrance of the alkyl substituent group.  相似文献   

2.
The molecular‐weight distribution (MWD), obtained by pulsed laser polymerization (PLP) at the high termination rate limit has been considered for investigating termination kinetics. The proposed methodology takes into account both the composite model for termination and the chain‐length dependencies of propagation for short‐chain and long‐chain radicals. Power‐law expressions are used to represent propagation and termination of long‐chain radicals (where k and k represent the maximum “virtual” rate coefficients for monomeric radicals, and α and β capture the chain‐length dependencies for propagation and termination), with the combined value of (βα) evaluated from the MWD, after correcting for the influence of the kinetics of short‐chain radicals. A novel method is also developed for determining the mode of termination, δ, from MWDs produced by PLP at the high termination rate limit. Simulations for methyl methacrylate (MMA) polymerization at 25 °C confirm that the method can be applied robustly in the presence of complicating factors such as chain transfer to monomer and SEC broadening. The analysis of an experimental MWD obtained for MMA polymerization at 25 °C results in estimates of 0.14 ± 0.03 for (βα) and 0.75 ± 0.04 for δ.

  相似文献   


3.
4.
We report first results on the controlled radical polymerization of 2,3‐epithiopropyl methacrylate (ETMA) also known as thiiran‐2‐ylmethyl methacrylate. Reversible addition‐fragmentation chain transfer (RAFT) of ETMA was carried out in bulk and in solution, using AIBN as initiator and the chain transfer agents: cyanopropyl dithiobenzoate (CPDB) and cumyl dithiobenzoate (CDB). A linear increase of the number‐average molecular weight and decrease of the polydispersity with monomer conversion were observed using CPDB as transfer agent, indicating a controlled process. Atom transfer radical polymerization (ATRP) of ETMA was performed under different reaction conditions using copper bromide complexed by tertiary amine ligands and ethyl 2‐bromoisobutyrate (EBiB) or 2‐bromopropionitrile (BPN) as initiator. All experiments lead to a crosslinked polymer. Preliminary studies in the absence of initiator showed that the CuBr/ligand complex alone initiates the ring‐opening polymerization of thiirane leading to a poly(propylene sulfide) with pendant methacrylate groups.

  相似文献   


5.
Utilizations of alkylboranes reagents in radical polymerization are summarized in this minireview. Alkylboranes act as conventional radical initiators or radical chain-transfer agents in free-radical polymerization and controlled radical polymerization. This review discusses various polymerizations operating through different alkylborane reagents with their accompanying mechanisms. The aim of this minireview is to present the state of art of alkylboranes in radical polymerization and to provide the future aspects of this direction. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 14–19  相似文献   

6.
A facile soap‐free miniemulsion polymerization of methyl methacrylate (MMA) was successfully carried out via a reverse ATRP technique, using a water‐soluble potassium persulfate (KPS) or 2,2′‐azobis(2‐methylpropionamidine) dihydrochloride (V‐50) both as the initiator and the stabilizer, and using an oil‐soluble N,N‐n‐butyldithiocarbamate copper (Cu(S2CN(C4H9)2)2) as the catalyst without adding any additional ligand. Polymerization results demonstrated the “living”/controlled characteristics of ATRP and the resultant latexes showed good colloidal stability with average particle size around 300–700 nm in diameter. The monomer droplet nucleation mechanism was proposed. NMR spectroscopy and chain‐extension experiments under UV light irradiation confirmed the attachment and livingness of UV light sensitive  S C(S) N(C4H9)2 group in the chain end.  相似文献   

7.
The metal catalyzed polymerization of methyl methacrylate using Cu(0) as the catalyst source has been investigated in toluene. This work looks at polymerizations in a non‐polar medium allowing control over the molecular weight and polydispersity with a 4‐fold reduction in catalyst concentration versus conventional ATRP, while the use of an active ligand allows the reaction to proceed at room temperature. The use of an excess of PMDETA ligand allows for high conversions, and the addition of a small amount of CuBr2 enhances living characteristics, enabling efficient chain extension.

  相似文献   


8.
Online size exclusion chromatography–electrospray ionization–mass spectrometry (SEC/ESI–MS) is employed for quantifying the overall initiation efficiencies of photolytically generated radical fragments. In a unique experiment, we present the first quantitative and systematic study of methyl‐substituted acetophenone‐type photoinitiators being employed in a single cocktail to initiate the free‐radical polymerization of methyl methacrylate (MMA) in bulk. The photoinitiators are constituted of a set of two known and four new molecules, which represent an increasing number of methyl substituents on their benzoyl fragment, that is, benzoin, 4‐methylbenzoin, 2,4‐dimethylbenzoin, 2,4,6‐trimethylbenzoin, 2,3,5,6‐tetramethylbenzoin, and 2,3,4,5,6‐pentamethylbenzoin. The absolute quantitative evaluation of the mass spectra shows a clear difference in the initiation ability of the differently substituted benzoyl‐type radical fragments: Increasing the number of methyl substituents leads to a decrease in incorporation of the radical fragments.  相似文献   

9.
Termination kinetics of methyl methacrylate (MMA) bulk polymerization has been studied via the single pulsed laser polymerization–electron paramagnetic resonance method. MMA‐d8 has been investigated to enhance the signal‐to‐noise quality of microsecond time‐resolved measurement of radical concentration. Chain‐length‐dependent termination rate coefficients of radicals of identical size, k, are reported for 5–70 °C and up to i = 100. k decreases according to the power‐law expression . At 5 °C, kt for two MMA radicals of chain‐length unity is k = (5.8 ± 1.3) · 108 L · mol−1 · s−1. The associated activation energy and power‐law exponent are: EA(k) ≈ 9 ± 2 kJ · mol−1 and α ≈ 0.63 ± 0.15, respectively.

  相似文献   


10.
Summary: The first monomode microwave‐assisted atom transfer radical polymerization (ATRP) is reported. The ATRP of methyl methacrylate was successfully performed with microwave heating, which was well controlled and provided almost the same results as experiments with conventional heating, demonstrating the absence of any “microwave effect” in ATRP (in contrast to several literature reports). Furthermore, we found that the main advantage of the microwave‐assisted reactions over conventional reactions, i.e., a significant increase of reaction rates, only had its limited application in ATRP, even in very slow ATRP systems with high targeted molecular weights.

Comparison of the kinetic plots of the ATRP of MMA ([MMA]0/[EBIB]0/[CuCl]0/[NHPMI]0 = 200:1:1:3, MMA/DMF = 1:1 v/v) carried out at 90 °C in DMF with microwave (▴) and conventional heating (•), respectively.  相似文献   


11.
Summary: Block copolymers of poly(ethylene oxide‐block‐2‐hydroxypropyl methacrylate) (PEO‐b‐PHPMA) with a range of molecular masses of the PHPMA block were obtained by controlled radical polymerization on a chip (CRP chip) using a PEO macroinitiator. A series of well‐controlled polymerizations were carried out at different pumping rates or reaction times with a constant ratio of monomer to initiator. The stoichiometry of the reactants was also adjusted by varying relative flow rates to change the reactant concentrations.

A schematic of a CRP chip and SEC traces of the PEO‐b‐PHPMA produced from different pump rates with a 1:100 ratio of initiator to monomer. The dashed peaks are the macroinitiator, PEO‐Br (left), and monomer, HPMA (right).  相似文献   


12.
Summary: Plasma‐initiated controlled/living radical polymerization of methyl methacrylate (MMA) was carried out in the presence of 2‐cyanoprop‐2‐yl 1‐dithionaphthalate. Well‐defined poly(methyl methacrylate) (PMMA), with a narrow polydispersity, could be synthesized. The polymerization is proposed to occur via a RAFT mechanism. Chain‐extension reactions were also successfully carried out to obtain higher molecular weight PMMA and PMMA‐block‐PSt copolymer.

Dependence of ln([M]0/[M]) on post‐polymerization time (above), and \overline M _{\rm n} and PDI against conversion (below) for plasma initiated RAFT polymerization of MMA at 25 °C.  相似文献   


13.
In a recent publication, Nakamura and co‐workers studied the termination mechanism in the radical polymerization of acrylates. Contrary to conventional thinking, their conclusion is that termination is overwhelmingly by disproportionation. This finding impacts on a large body of the previous work in the polymerization of acrylic monomers which this work seeks to address. Analysis of the molecular weight distribution of acrylic polymers obtained under different polymerization conditions shows that termination by combination is the more probable mechanism for mutual termination of secondary radicals. It is proposed that in the experiments conducted by Nakamura and co‐workers, backbiting plays a key role and their experimental data are reinterpreted, showing that they are more revealing with respect to the mode of termination of the midchain radical produced by backbiting, than to bimolecular termination of secondary radicals.

  相似文献   


14.
Summary: The controlled/living radical polymerizations of methyl acrylate in 50% v/v of an ionic liquid initiated by the alkoxyamine generated in situ from 4‐oxo‐2,2,6,6‐tetramethyl‐1‐piperidinyl‐N‐oxyl (4‐oxo‐TEMPO) and 2,2′‐azoisobutyronitrile (AIBN) at 140–155 °C are reported. The number‐average molecular weights increased linearly with conversion, and polydispersity indices are approximately 1.4 in the best case. The rates of polymerization were greater than in anisole, and similar to the rate of spontaneous polymerization in the ionic liquid.

(filled symbols) and (open symbols) vs. conversion for the MA polymerization in the presence of [4‐oxo‐TEMPO]/[AIBN] (2.8:1) in 50% v/v anisole with 0.03 M AIBN (squares) and 50% v/v [hmim][PF6] with 0.03 M AIBN (circles), and 0.06 M AIBN (triangles).  相似文献   


15.
It is well known that the recently developed photoinduced metal‐free atom transfer radical polymerization (ATRP) has been considered as a promising methodology to completely eliminate transition metal residue in polymers. However, a serious problem needs to be improved, namely, large amount of organic photocatalysts should be used to keep the controllability over molecular weights and molecular weight distributions. In this work, a novel photocatalyst 1,2,3,5‐tetrakis(carbazol‐9‐yl)‐4,6‐dicyanobenzene (4CzIPN) with strong excited state reduction potential is successfully used to mediate a metal‐free ATRP of methyl methacrylate just with parts per million (ppm) level usage under irradiation of blue light emitting diode at room temperature, using ethyl α‐bromophenyl‐acetate as a typical initiator with high initiator efficiency. The polymerization kinetic study, multiple controlled “on–off” light switching cycle regulation, and chain extension experiment confirm the “living”/controlled features of this promising photoinduced metal‐free ATRP system with good molecular weight control in the presence of ppm level photocatalyst 4CzIPN.

  相似文献   


16.
The successful chain‐growth copper(I)‐catalyzed azide–alkyne cycloaddition (CuAAC) polymerization employing Cu(0)/pentamethyldiethylenetriamine (PMDETA) and alkyl halide as catalyst is first investigated by a combination of nuclear magnetic resonance, gel‐permeation chromatography, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. In addition, the electron transfer mediated “click‐radical” concurrent polymerization utilizing Cu(0)/PMDETA as catalyst is successfully employed to generate well‐defined copolymers, where controlled CuAAC polymerization of clickable ester monomer is progressed in the main chain acting as the polymer backbone, the controlled radical polymerization (CRP) of acrylic monomer is carried out in the side chain. Furthermore, it is found that there is strong collaborative effect and compatibility between CRP and CuAAC polymerization to improve the controllability.

  相似文献   


17.
18.
Amphiphilic star shaped polymers with poly(ethylene oxide) (PEO) arms and cross‐linked hydrophobic core were synthesized in water via either conventional free radical polymerization (FRP) or atom transfer radical polymerization (ATRP) techniques using a simple “arm‐first” method. In FRP, PEO based macromonomers (MM) were used as arm precursors, which were then cross‐linked by divinylbenzene (DVB) using 2,2′‐azoisobutyronitrile (AIBN). Uniform star polymers ( < 1.2) were achieved through adjustment of the ratio of PEO MM, DVB, and AIBN. While in case of ATRP, both PEO MM, and PEO based macroinitiator (MI) were used as arm precursors with ethylene glycol diacrylate as cross‐linker. Even more uniform star polymers with less contamination by low MW polymers were obtained, as compared to the products synthesized by FRP.

  相似文献   


19.
An overview of a systematic investigation of a tetrafunctional peroxide initiator's behaviour is presented. The study focuses on three main areas of research: kinetic experiments, polymer characterization and modelling efforts. The kinetic investigation compared the behaviour of the tetrafunctional initiator (JWEB50) to that of a monofunctional counterpart (TBEC) for a variety of monomers. Although higher rates of polymerization were generated with JWEB50 for all monomers investigated, switching from a mono‐ to a tetrafunctional initiator actually decreased the polymer molecular weight for methyl methacrylate. While chromatographic characterization methods were able to detect branching in polystyrene samples produced with JWEB50, this was not the case for poly(methyl methacrylate). However, evidence of branching was clearly observed for both polystyrene and PMMA when rheological methods were employed. In order to explain the experimental results, a mathematical model was developed. Through its use, the concentration and chain length of various polymer structures (i.e., linear, star or coupled stars) was found to depend upon monomer type and reaction conditions.

  相似文献   


20.
稳定自由基存在下苯乙烯聚合的加速剂   总被引:1,自引:0,他引:1  
研究了稳定自由基存在下苯乙烯的活性聚合,发现在β-酮酸酯-乙酰乙酸乙酯,乙二酸二乙酯,1,3-二酮-乙酰丙酮的少量存在下,苯乙烯聚合速率显著增加,分子量可控,分子量在布较窄。而乙酰丙酮较大量存在下,聚苯乙烯分散性稍微变宽。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号